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Conventions

The following conventions are used in this manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a 
range of values associated with a bit or signal name—for example, 
DIO<3..0>.

[ ] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction 
to a key concept. Italic text also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value 
that you must supply.
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1
Introduction

The Control Design Module (CDM) is a complete library of classical and 
modern control design functions that provides a flexible, intuitive control 
design framework. 

This chapter starts with an outline of the manual and some user notes. It 
also contains a tutorial that presents several problems and uses a variety of 
approaches to obtain solutions. The tutorial is designed to familiarize you 
with many of the functions in this module.

Using This Manual
This manual provides an overview of different aspects of linear systems 
analysis, describes the Xmath Control Design function library, and gives 
examples of how you can use Xmath to solve problems rapidly. It also 
explains how you can represent and analyze linear systems in Xmath and 
provides a brief syntax listing and supplementary algorithm information for 
each CDM function. Detailed descriptions of function inputs, outputs, and 
behavior are provided in the Xmath Help.

Document Organization
This manual includes the following chapters:

• Chapter 1, Introduction, starts with an outline of the manual and some 
user notes. It also contains a tutorial that presents several problems and 
uses a variety of approaches to obtain solutions. The tutorial is 
designed to familiarize you with many of the functions in this module.

• Chapter 2, Linear System Representation, describes the types of linear 
systems that can be represented within Xmath. In addition, it discusses 
the implementation of systems as objects–data structures 
encompassing different information fields. The Xmath functions for 
creating a system or extracting its components are part of the general 
Xmath package and not exclusive to the Control Design Module, but 
they are used so extensively that they warrant a detailed treatment here. 
This chapter also discusses the functions you can use to check for 
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particular system properties or to change the format of a system. These 
topics include continuous/discrete system conversion, as well as 
finding equivalent transfer function state-space representations. 

• Chapter 3, Building System Connections, details Xmath functions that 
perform different types of linear system interconnections. It also 
discusses a number of simpler connections that have been 
implemented as overloaded operators on system objects. 

• Chapter 4, System Analysis, describes the Xmath functions relating to 
system stability and time-domain analysis. These include poles, zeros, 
and residue. The chapter moves from the discussion of time-domain 
stability to time-domain system simulation. Xmath provides built-in 
functions for obtaining impulse and step responses, as well as 
examining system response to arbitrary initial conditions. In addition, 
the General Time-Domain Simulation section discusses a 
mathematically natural syntax for time-domain system simulation 
with any input.

• Chapter 5, Classical Feedback Analysis, discusses topics pertaining 
to classical feedback-based control design. These include root locus 
techniques and functions for frequency-domain analysis of 
closed-loop systems, given open-loop system descriptions. 

• Chapter 6, State-Space Design, focuses on modern control. Beginning 
with the topics of system controllability and observability, it covers 
general pole placement, linear quadratic control, and system 
balancing. 

Bibliographic References
Throughout this document, bibliographic references are cited with 
bracketed entries. For example, a reference to [DeS74] corresponds to 
a document published by Desoer and Schulman in 1974. For a table of 
bibliographic references, refer to Appendix A, Technical References.

Commonly Used Nomenclature
This manual uses the following general nomenclature:

• Matrix variables are generally denoted with capital letters; vectors are 
represented in lowercase.

• G(s) is used to denote a transfer function of a system where s is the 
Laplace variable. G(q) is used when both continuous and discrete 
systems are allowed.
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• H(s) is used to denote the frequency response, over some range of 
frequencies of a system where s is the Laplace variable. H(q) is used to 
indicate that the system can be continuous or discrete.

• A single apostrophe following a matrix variable, for example, x', 
denotes the transpose of that variable. An asterisk following a matrix 
variable (for example, A*) indicates the complex conjugate, or 
Hermitian, transpose of that variable. 

Related Publications
For a complete list of MATRIXx publications, refer to Chapter 2, 
MATRIXx Publications, Online Help, and Customer Support, of the 
MATRIXx Getting Started Guide. The following documents are particularly 
useful for topics covered in this manual:

• MATRIXx Getting Started Guide

• Xmath User Guide

• Control Design Module

• Interactive Control Desing Module

• Interactive System Identification Module, Part 1

• Interactive System Identification Module, Part 2

• Model Reduction Module

• Optimization Module

• Robust Control Module

• Xμ Module

MATRIXx Help
Control Design Module function reference information is available in the 
MATRIXx Help. The MATRIXx Help includes all Control Design functions. 
Each topic explains a function’s inputs, outputs, and keywords in detail. 
Refer to Chapter 2, MATRIXx Publications, Online Help, and Customer 
Support, of the MATRIXx Getting Started Guide for complete instructions 
on using the Help feature.
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Control Design Tutorial
This tutorial illustrates the use of functions and commands provided in 
Xmath and the Xmath Control Design Module to solve control problems. 
The emphasis of the tutorial is on using a number of different approaches, 
not on any one “correct” way to solve a problem. It demonstrates the 
flexibility of Xmath’s tools and scripting language to customize your 
analysis in a way that is as straightforward and mathematically intuitive as 
possible.

The models in this tutorial are adapted from the studies in [ShH92], of the 
equations presented in [FPE87], for the longitudinal motion of a helicopter 
near hover, and in [HW91], for the inverted-wedge-balancing problem. 

Helicopter Hover Problem: An Ad Hoc Approach
[FPE87] gives this state-space model for the longitudinal motion of the 
helicopter:

letting the state variables q, θ, and v represent the helicopter’s pitch rate, 
pitch angle, and horizontal velocity, respectively. The input control to the 
system is the rotor tilt angle, δ.

You can store the information that this model provides in an Xmath 
state-space system object:

A = [-0.4,0,-0.01;1,0,0;-1.4,9.8,-0.02];

B = [6.3;0;9.8];

C = [0,0,1];

D = 0;

ssys = system(A,B,C,D,

{inputNames ="Rotor Angle",

outputNames="Horizontal v",

stateNames =["Pitch Rate", "Pitch Angle",

"Horizontal v"]})

q·

θ·

v·

0.4– 0 0.01–

1 0 0
1.4– 9.8 0.02–

q
θ
v

6.3
0
9.8

δ+=

y 0 0 1
q
θ
v

=
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ssys (a state space system) =

A

-0.4 0 -0.01

1 0 0

-1.4 9.8 -0.02

B

6.3

0

9.8

C

0  0  1

D

0

X0

0

0

0

State Names

-----------

Pitch Rate Pitch Angle Horizontal v 

Input Names

-----------

Rotor Angle 

Output Names

------------

Horizontal v 

System is continuous

Use check( ) to convert the model to transfer-function form:

[,Gs] = check(ssys,{tf,convert})

Gs (a transfer function) =

2 

9.8(s - 0.5s + 6.3)

-----------------------------------------

2

(s + 0.656513)(s - 0.236513s + 0.149274)

initial integrator outputs

0

0

0
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Input Names

-----------

Rotor Angle 

Output Names

------------

Horizontal v 

System is continuous

The system has poles and zeros in the right half of the complex plane and 
therefore is open-loop unstable. Checking the pole and zero locations 
confirms this:

ol_poles=poles(ssys)

ol_poles (a column vector) =

0.118256 - 0.367817 j

0.118256 + 0.367817 j

-0.656513 

ol_zeros=zeros(ssys)

ol_zeros (a column vector) =

0.25 + 2.4975 j

0.25 - 2.4975 j

Try to stabilize the system using feedback compensation. You have two 
major performance goals to achieve through your controller design: first, 
the system must be closed-loop stable, and second, you want the system 
output to track a unit step input. To begin, put two compensators in the 
feedforward path of the closed-loop system. Figure 1-1 is a closed-loop 
block diagram of helicopter system H(s) with compensators K1(s) and K2(s) 
in the feedforward path.

Figure 1-1.  Block Diagram of Helicopter System H(s) with Compensators K1(s) and 
K2(s) in the Feedforward Path

U(s) Y(s)
G(s) K1(s) K2(s)

+

–
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One approach to stabilizing this system is to try to cancel the pole at 
–0.656513 by adding a compensator, K1(s), with a zero at –0.656513. 

Note It is important to understand that this is primarily an academic exercise. Accurate 
pole-zero cancellations are impracticable in the real world, and the mode corresponding to 
that pole still exists internally.

This compensator must have a pole for realizability, so you add one at –10, 
which is far enough away that its effect on dynamic response will be small 
compared to that of the system’s other modes. In addition, you need to add 
a zero to the left of the positive (and unstable) poles to pull the closed-loop 
system roots into the left half plane. Choose s = 0 for the zero location and, 
again, select a corresponding pole at –10. Call this second compensator 
K2(s). To create these two compensators:

K1s=polynomial(ol_poles(3),"s")/...

polynomial(-10,"s");

K2s=polynomial(0,"s")/polynomial(-10,"s");

You then can cascade them in series with the original system Gs (or ssys) 
and examine the locus of closed-loop roots for varying total compensator 
gain Kc. The poles out at –10 have a smaller effect on the system dynamics 
than do the poles closer to the origin, so you can use the optional 
rlocus( ) keywords to zoom in on the part of the locus nearer the origin. 

rlocus(K2s*K1s*Gs, {xmin = -2, xmax = 2})

The single input syntax activates interactive mode. A user interface lets 
you change the gain through the Feedback Loop Gain slider and button. 
The graphics window shows the closed-loop locus as a solid line, with the 
open-loop poles shown as large xs and the open-loop zeros shown as Os. 
Increase the gain by moving the slider; notice the asterisks (*) denoting 
closed-loop pole location moving along the locus. The system is maximally 
stable with total compensator gain Kc = 2 as shown in Figure 1-2. In this 
figure, small xs denote the pole location for Kc = 2, and the root locus gain 
window shows settings.
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Figure 1-2.  Locus of all Open-Loop and Closed-Loop Roots of Gs

If you cannot move the slider so that the gain is exactly 2, click the box to 
the right of the slider and enter 2. To close the interactive root locus dialog 
box, select File»Exit.
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Close the loop using the single-input syntax of feedback( ), which 
implements direct unity-gain negative feedback, and obtain the system’s 
step response using step( ):

Kc = 2; cl_syscomp1 = feedback(Kc*K1s*K2s*Gs);

v = step(cl_syscomp1, 0:.2:25);

plot(v,{xlab="Time", ylab="Horizontal Velocity"})

The resulting plot is shown in Figure 1-3. This result is not desirable. You 
want the output (the helicopter velocity) to track the step input provided as 
the rotor tilt angle, not zero out its effects over time (which would be an 
appropriate response if the input corresponded to a disturbance). This 
results from the compensator zero at s = 0 in the forward path of the 
feedback loop.

Figure 1-3.  Helicopter Velocity Response to a Step Input at the Rotor

Instead, you now place K1(s) in the forward path and K2(s) in the feedback 
path, so that the closed-loop system now has the configuration shown in 
Figure 1-4.
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Figure 1-4.  Block Diagram of the Closed-Loop Controller 

This is a block diagram of the closed-loop controller with compensator 
Kc1K1(s) in the feedforward path and Kc2K2(s) in the feedback path.
This time, instead of having all your gain Kc in the forward path of the 
closed-loop system, the system gain is split between the two compensators. 
The gains Kc1 and Kc2 are defined such that Kc = 2 = Kc1Kc2 and the 
closed-loop transfer function Tc1(s) is unity at s = 0(DC). 

The closed-loop transfer function is represented by:

You can find the values of the individual transfer functions at s = 0 using 
freq( ), and then substitute to solve the previous equation:

a = makematrix(freq(K1s*Gs,0));

b = makematrix(freq(K1s*K2s*Gs,0));

Solving:

Kc1 = (1+2*b)/a

Kc1 (a scalar) = 0.0241778

Kc2 = 2/Kc1

Kc2 (a scalar) = 82.7206

You now call feedback( ) again, this time using its second input 
argument to indicate that the outputs of the first input system (forward path) 
are fed back as the inputs to the second system (feedback path) in a 
negative-feedback loop.

cl_syscomp2 = feedback(Kc1*K1s*Gs, Kc2*K2s);

U(s) Y(s)
G(s)

Kc2K2(s)

Kc1K1(s)
+

–

Tcl s( )
Kc1K1 s( )G s( )

1 Kc1Kc2K1 s( )K2 s( )G s( )+
-------------------------------------------------------------------=
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Because cl_syscomp2 contains an internal pole-zero cancellation, you 
can rewrite it in minimal form and then check the closed-loop pole and zero 
locations:

cl_syscomp2m = minimal(cl_syscomp2);

The system has 1 uncontrollable state 

cl_poles = poles(cl_syscomp2m)

cl_poles (a column vector) =

-0.166518 

-1.0325 + 1.16109 j

-1.0325 - 1.16109 j

-37.132 

cl_zeros = zeros(cl_syscomp2m)

cl_zeros (a column vector) =

0.25 - 2.4975 j

0.25 + 2.4975 j

-10 

Now, examine the step response as shown in Figure 1-5.

vcomp = step(cl_syscomp2m, 0:.1:25);

plot (vcomp, {xlab = "Time", 

ylab = "Horizontal Velocity"})
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Figure 1-5.  Helicopter Velocity Tracking Step Input at the Rotor

You also can look at the gain and phase margins of the system.

H = bode(cl_syscomp2m, {npts = 200, !wrap});

[gm,pm] = margin(H)

There are no 0 dB gain crossings. 

gm (a pdm) =

domain | 

---------+----------

0.250101 | 26.1694

---------+----------

pm is null

The bode plot of the closed-loop system is shown in Figure 1-6.
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Figure 1-6.  Closed-Loop System Bode Plot

The domain of the gain and phase margin PDMs indicates the frequency 
(in hertz) at which the margin occurs. So the gain can be increased by about 
26.1 dB before the system becomes unstable.

Helicopter Hover Problem: State Feedback and Observer Design
The approach taken in the Helicopter Hover Problem: An Ad Hoc 
Approach section, although producing a desirable response, often cannot 
be used in practice because uncertainty in modeling generally precludes 
exact knowledge of the location of the pole one plans to cancel. 

Another approach is to feed the information obtained from the states back 
to the inputs through gains calculated to relocate the closed-loop poles. 
Refer to the Controllability section of Chapter 6, State-Space Design, 
for more information. For this approach, you first need to verify that your 
system is controllable and observable. When you have confirmed that it 
is—that there are no hidden modes—you can design a full-state feedback 
control law that will place the system eigenvalues at values that will yield 
a stable system. Because the system is observable, you then can design an 
estimator to yield estimates for the missing states. Again, you will require 
that your system track a step input.
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You can verify that your system is controllable, then define the closed-loop 
poles you want and use poleplace( ) to find the feedback gains required 
given the system A and B matrices.

[,,nuc] = controllable(Gs)

nuc (a scalar) = 0

Because the number of uncontrollable states is zero, Gs is controllable. This 
means that you can use feedback through appropriately-sized gains to 
position the system’s closed-loop poles anywhere you want. If you choose 
the three poles to be moved to –1 ±j and –2, you get the following set of 
gains:

clp = [-1+jay, -2];

Kfsb = poleplace(A,B,clp)

Kfsb (a row vector) = 0.470648 1.00004 0.062747

Note poleplace( ) does not require you to list both poles in a conjugate pair.

If you assume that the outputs of the system are just the values of all the 
states, you can draw the open-loop system block diagram as shown in 
Figure 1-7. In this figure, the feedback path is shown in dotted lines and the 
open-loop system in solid lines. 

Figure 1-7.  Full-State Feedback Regulator

Because you do not have access to all three states—only one, the horizontal 
velocity, is returned as an output—you need to estimate the other states, 
thus implementing an observer-based controller. The block diagram for the 
observer and controller together is shown in Figure 1-8.

Figure 1-8.  Complete Controller and Estimator

r u x
x = Ax + Bu Kfsb

+

–
⋅

x
x = (A – LC)x + Bu + Ly Kfsb

x = Ax + Bu
y = Cx + Du

⋅u y

Estimator Control Plant



Chapter 1 Introduction

© National Instruments Corporation 1-15 Xmath Control Design Module

Specify the observer poles at [–3 + 3j, –4] and call poleplace( ) again:

op = [-3+3*jay, -4];

L = poleplace(A',C',op)

L (a row vector) = 5.46645 4.67623 9.58

You connect the controller to the observer using lqgcomp( ). L needs to 
be a column vector, so you transpose it.

sys_obc = lqgcomp(ssys, Kfsb, L');

You can use names( ) to modify the names of the state estimates to be 
more descriptive. To distinguish the estimated states from the “true” states, 
you can use the + operator to append the string est to the estimated state 
names, as shown in this example.

[,,osNames] = names(sys_obc);

estNames = osNames + [" (est)"," (est)"," (est)"];

estNames'?

ans (a column vector of strings) =

Pitch Rate (est) 

Pitch Angle (est) 

Horizontal v (est) 

You can append these modified names to sys_obc:

sys_obc = system(sys_obc,{stateNames=estNames});

Then you close the loop and verify that the closed-loop poles are all in the 
left-half plane.

sys_cl = feedback(ssys, sys_obc);

poles(sys_cl)

ans (a column vector) =

-1 + 1 j

-1 - 1 j

-2 

-4 

-3 + 3 j

-3 - 3 j
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You can choose to scale the system output here for zero steady-state error 
in the step response. This is accomplished in an intuitive manner, dividing 
the system sys_cl by the desired scaling factor.

sys_cl = sys_cl/51.76;

v_obc = step(sys_cl, 0:.1:10);

plot (v_obc, {xlab = "Time", ylab = "Magnitude"})

In Figure 1-9 the step response shows zero-steady-state error, little 
overshoot, and a response time of less than seven seconds.

Figure 1-9.  Step Response for Observer-Based Design

The system response is quite good, implying that your state estimates were 
satisfactory. You can do some further simulation, this time returning all the 
states directly from the original plant, and get a graphical picture of how the 
estimates track the actual states. First, you need to create the closed-loop 
system with all states available.

The abcd( ) function extracts the A, B, C, and D matrices from a system 
object. When you call it here, all you are interested in is the closed-loop 
A matrix, so you do not need to extract the other state-space matrices.

A_cl = abcd(sys_cl);
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When you create the estimator system sys_est, you use the original 
A matrix for the state-update equation, but you provide a zero external 
input (a B matrix of zero). The output matrix is an identity matrix passing 
back the three real state values and the three estimated state values as 
output, again with no external input values affecting the output. Here you 
use the optional system( ) keyword X0 to set the real state values to 
[1,2,3] and the estimated state values to [–1,–2,–3]. 

By simulating with a general input over two seconds, you can see how long 
it takes for the state values provided by the estimator to correct the incorrect 
initial conditions and track the real state values.

[,,allStates]=names(sys_cl);

sys_est = system(A_cl, zeros(6,1), eye(6,6), ...

zeros(6,1),{x0 = [1,2,3,-1,-2,-3], ...

stateNames = allStates});

state_resp = sys_est*pdm(ones(100,1), 0:(2/99):2);

Plot the results, referring to Figure 1-10:

plot(state_resp,{strip=2,xlab="Time",

legend=["State","State estimate"]})

Even in the relatively short time span of this simulation, the estimates and 
the real states quickly converge. 
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Figure 1-10.  Multiple Plots Showing Time Needed for States to be Correctly Tracked 
by Estimator, Given Incorrect Initial Values

Helicopter Hover Problem: Discrete Formulation
Discrete-time control systems are most frequently designed in one of 
two ways: either directly implemented in the discrete domain, or first 
solved as continuous problems—often deriving directly from differential 
equations of motion—and then discretized. Here you take the second 
approach with the problem solved in the Helicopter Hover Problem: State 
Feedback and Observer Design section.

A guideline for choosing a sample rate for a system to be discretized is that 
it be significantly less than the smallest time constant of the continuous 
system divided by π. 

Look at the open-loop pole magnitudes of your original open-loop 
continuous-time system ssys:

max(abs(ol_poles))

ans (a scalar) = 0.656513



Chapter 1 Introduction

© National Instruments Corporation 1-19 Xmath Control Design Module

You can use the default exponential discretization method with dt = 0.01 
and compare frequency responses between the original system and the 
discretized system:

ssysd = discretize(ssys, 0.01);

f = freq(ssys,logspace(.001,10,200));

fd = freq(ssysd,logspace(.001,10,200));

In the following statements you compute the gain and phase of both 
systems and then plot them.

db = 20*log10(abs(f)); ph = (180/pi)*atan2(f);

dbd = 20*log10(abs(fd)); phd = (180/pi)*atan2(fd);

plot([db;ph;dbd;phd],{strip=2,xlog,

ylab = ["Gain (dB)";"Phase (deg)"],

x_lab = "Frequency (Hz)",

legend = ["ssys";"ssysd"]})

In Figure 1-11 you can see the frequency responses match closely, 
indicating that this discretization method captures the continuous system’s 
dynamics accurately.

Figure 1-11.  Frequency Response of ssys and Its Discrete Equivalent ssysd
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Figure 1-12.  Step Response of a Discrete System Using Discretized 
Observer-Based Controller

As you discretize the compensator, form the closed-loop, scaled system, 
and simulate its response to a step input, you must ensure that the sampling 
interval is the same (dt = 0.01).

sys_obcd = discretize(sys_obc, 0.01);

sys_cld = feedback(ssysd,sys_obcd)/51.76;

v_cld = step(sys_cld, 0:0.01:10);

plot (v_cld, {xlab = "Time", ylab = "Magnitude"})

The resulting response is shown in Figure 1-12.

Inverted Wedge-Balancing Problem: LQG Control 
[HW91] discusses an approach to balancing an inverted wedge by 
controlling the location of a sliding mass along the inside of the wedge. 
This example illustrates use of optimal control with a multi-input, 
multi-output (MIMO) system. This approach is based on minimizing a 
quadratic performance index with weight values based on the natural 
constraints of the system.



Chapter 1 Introduction

© National Instruments Corporation 1-21 Xmath Control Design Module

The linearized state-space equations, including the actuator and sensor 
dynamics, are as follows:

θ is the angle (in radians) the wedge makes with the vertical axis, x is the 
position of the sliding mass, and u is the control input voltage. The outputs 
are scaled to give the measured angle in degrees and the measured position 
in meters.

A = [0,0,1,0;0,0,0,1;

15.54,-10.93,0,0;

-5.31,0,0,-16.24];

B = [0,0,0,1.96]';

C = [57.29,0,0,0;0,29.9,0,0];

D = [0;0];

states = ["Angle", "Mass Position", 

"Angular Velocity","Mass Velocity"];

wsys = system(A,B,C,D,

{inputNames= "Voltage",

stateNames = states,

outputNames=["Measured Angle","Measured 

Position"]});

You need to ensure that you have no uncontrollable or unobservable modes 
of the system:

[,,nuco] = minimal(wsys)

nuco (a scalar) = 0

Because there are no uncontrollable or unobservable states, you can 
proceed with the design of a regulator and estimator. The weighting matrix 
used here in designing the regulator reflects the desire to bring the value of 
the first state, the angle with the vertical, to zero as quickly as possible. 

θ·

x·

θ··

x··

0 0 1 0
0 0 0 1

15.54 10.93– 0 0
5.31– 0 0 16.24–

θ
x

θ·

x·

0
0
0
1.96

u+=

y 57.29 0 0 0
0 29.9 0 0

θ
x

θ·

x·

=
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Because this system is open-loop unstable and has fairly fast poles in both 
halves of the s-plane, you want to make sure it can bring the effect of an 
external disturbance (such as a sharp push to the cart) to zero as quickly as 
possible. 

[Kr,EVr,Pr] = regulator(wsys,diag([1e8,1,1,1]),1);

You then can verify that the regulator gain Kr can be used with full-state 
feedback to control this system by using an identity matrix for C to feed 
back the states:

[no, ni, ns] = size(wsys);

augwsys = system(A,B,eye(ns, ns),[]);

creating the compensator (which is a system object, though it has no states 
and thus has NULL A, B, and C matrices) with the gains Kr:

comp = system([],[],[],Kr);

and feeding back the states:

wsysreg = feedback(augwsys, comp);

You then can observe the system response to a sustained disturbance by 
simulating a five-second step response:

stepreg = step(wsysreg, 0:0.01:5);

plot (stepreg, {legend=states,

xlab="Time",ylab="Magnitude",

title="System Step Response with "+... 

"Full State Availability",!grid})

The resulting plot is shown in Figure 1-13.
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Figure 1-13.  Response of Full-State Feedback Controller to a Unit Step Disturbance

Having established your regulator design, you build the estimator and 
simulate performance of the closed-loop system feeding back state 
estimates. You select the weights for the estimator based on the assumption 
that the state noise intensities corresponding to the wedge angle are smaller 
than those corresponding to the wedge position. The output weight matrix 
reflects your higher priority on the wedge angle than position. 

The following steps generate the plot shown in Figure 1-14:

[Ke,EVe,Pe] = estimator(wsys,

diag([1e-3,1,1e-3,10]), diag([14,0.01]));

wcomp = lqgcomp(wsys,Kr,Ke);

wlqg = feedback(wsys,wcomp);

resp = step(wlqg,0:0.01:3);

plot (resp, {legend = names(wlqg), 

xlab = "Time",ylab = "Magnitude",

title = "Observer-Controller System "+...

 "Step Response",!grid})
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Figure 1-14.  Response of Observer-Based Controller to a Unit Step Disturbance
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2
Linear System Representation

Xmath provides a structure for system representation called a system 
object. This object includes system parameters in a data structure designed 
to reflect the way these systems are analyzed mathematically. Operations 
on these systems are likewise defined using operators that mirror as closely 
as possible the notation control engineers use. This chapter outlines the 
types of linear systems the system object represents and then discusses the 
implementation of a system within Xmath. The functions used to create a 
system object and to extract data from this object are an intrinsic part of the 
object and are also described. Finally, this chapter discusses the functions 
check( ), discretize( ), and makecontinuous( ), which use 
information stored in the system object to convert systems from one 
representation to another. 

Linear Systems Represented in Xmath
Xmath handles finite-dimensional, linear, and time-invariant linear 
systems in both discrete and continuous time. These systems take one 
of the forms shown in Table 2-1.

The transfer function representation can be used to describe single-input, 
single output (SISO) systems only; there are no restrictions on the number 
of input and outputs that can be specified for a state-space system. All of 
these systems can be created using the Xmath system( ) function. 

Table 2-1.  Summary of Linear Systems

System Type Continuous Time Discrete Time

State-spec

Transfer function

x· Ax Bu+=

y Cx Du+=

xk 1+ Axk Buk+=

yk Cxk Duk+=

H s( ) C sI A–( ) 1– B D+= H z( ) C zI A–( ) 1– B D+=



Chapter 2 Linear System Representation

Xmath Control Design Module 2-2 ni.com

Transfer Function System Models
One way of representing continuous-time finite-dimensional linear 
time-invariant systems is with the transfer function:

with num(s) and den(s) being polynomials in s. They can be specified either 
by their roots or their coefficients. Transfer functions are defined using the 
Laplace transform operators for continuous time and the forward shift 
operator z for discrete time. Both forms of transfer functions are written 
with positive coefficients, each higher order terms having successively 
larger coefficients.

Discrete systems are defined analogously, using the z variable instead of s. 
Xmath does not automatically perform cancellations of polynomial roots 
appearing in both the numerator and the denominator of a transfer function. 
If you want to cancel common roots in a transfer function, use the function 
cancel( ). For state-space systems, refer to the minimal( ) function. 
For more information, refer to the Minimal Realizations section of 
Chapter 6, State-Space Design.

To illustrate how you arrive at a particular transfer function, if you have a 
system differential equation that takes the form:

(2-1)

Laplace-transforming equation (assuming zero initial conditions) yields:

(2-2)

Collecting terms, you can find the transfer function from U(s) to Y(s), H(s):

(2-3)

The roots of the numerator polynomial are the zeros of the transfer 
function, and the roots of the denominator are its poles. In some 
circumstances, you might want to construct a transfer function based on 
where you know the pole and zero locations to be. For example, you can 

H s( ) num s( )
den s( )
------------------=

y·· 6y· 8y+ + 2u· u–=

s2Y s( ) 6sY s( ) 8Y s( )+ + 2sU s( ) U s( )–=

Y s( )
U s( )
----------- H s( ) 2s 1–

s2 6s 8+ +
--------------------------= =
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form the same transfer function as that derived in the preceding transfer 
function equation using known pole, zero, and gain values:

(2-4)

The systems represented in Equations 2-3 and 2-4 can be represented using 
Xmath’s system objects, as shown in Example 2-1.

The Xmath transfer function system object currently can be used to 
represent single-input, single-output systems only. State-space form can 
be used to describe systems with multiple inputs or outputs. For more 
information, refer to the State-Space System Models section.

Example 2-1 Creating Transfer Functions 

The polynomials in the numerator and denominator of the transfer function 
in Equation 2-3 are both in coefficients form, (described using just 
coefficients, not roots). makepoly( ) creates two polynomials and passes 
them to the system( ) function:

num3 = makepoly([2,-1],"s");

den3 = makepoly([1,6,8],"s");

H3 = system(num3,den3)

This displays as:

H3 (a transfer function) =

2s - 1

----------

s2 + 6s + 8

initial integrator outputs

0

0

Input Names

-----------

Input 1

Output Names

------------

Output 1 

System is continuous

The three statements used to create the transfer function could be more 
compactly combined as one. The use of s as the variable in which to express 
the transfer function is optional. Any variable, including the default x, can 

H s( ) 2 s 0.5–( )
s 2+( ) s 4+( )

---------------------------------=
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be used so long as a consistent choice of variable is used for both numerator 
and denominator polynomials.

The transfer function in pole-zero-gain form from the preceding equation 
can be similarly implemented using the polynomial( ) function to 
specify the numerator and denominator by their roots. 

Note The / operator also can be used to create systems in transfer function form, as an 
alternative to using system( ).

H4 = 2*polynomial(0.5,"s")/polynomial([-2,-4],"s")

which displays as:

H4 (a transfer function) =

2(s - 0.5)

--------------

(s + 2)(s + 4)

initial integrator outputs

0

0

Input Names

-----------

Input 1 

Output Names

------------

Output 1 

System is continuous

In both of these cases you have created a continuous system. Systems 
created in Xmath contain sample rate information as well as the numbers 
representing system dynamics. However, unless a sample rate is explicitly 
given as a keyword to system( ), it defaults to zero and the system is 
continuous. For an illustration of how to create a discrete system, refer to 
Example 2-2. The full discussion of the system( ) function in the 
system( ) section contains a listing of all the keywords associated with 
system( ). 
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State-Space System Models
State-space models comprise the second category of linear system 
representations in Xmath. In state-space form, first-order differential 
(continuous-time) and difference (discrete-time) equations are represented 
as a set of state and output updates. The states are represented by a vector 
x; u and y are vectors with as many elements as there are inputs and outputs, 
respectively. This system model is useful for representing multi-input, 
multi-output (MIMO) systems.

continuous time:

discrete time:

A straightforward mathematical transformation from the state-space form 
to the transfer function form is as follows:

All of the forms represented in these equations can be represented using 
Xmath’s system objects, as shown in Example 2-2.

Example 2-2 Creating a Discrete State-Space System

Suppose you have a system which you describe in state-space form as:

and you know that the sample period of the system is 0.5 seconds between 
samples—that is, the states and outputs are updated at every discrete 
interval k, consisting in this case of 0.5 seconds. 

x· Ax Bu+=

y Cx Du+=

xk 1+ Axk Buk+=

yk Cxk Duk+=

H q( ) C qI A–( ) 1– B D+=

xk 1+
0 1
0.75– 0

xk
1
0
uk+=

yk 0 1 xk=
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Again, you create the system using the system( ) function. This time you 
use the optional dt keyword to indicate that this system is discrete. 

A = [0,1;-0.75,0];

B = [1,0]';

C = [0,1];

D = 0;

sys4 = system(A,B,C,D, {dt = 0.5})

sys4 (a state space system) =

A

0 1

-0.75 0

B

1

0

C

0 1

D

0

X0

0

0

System is discrete, sampling at 0.5 seconds.

Although five lines of MathScript were used to be as explicit as possible in 
creating this system, the call to system( ) can encompass all of them. 

Note When you create a system object, its inputs (A, B, C, D) are no longer needed. 

Basic System Building Functions
The functions discussed in the following sections are available with the 
general Xmath package. However, Control Design Module users will find 
these functions an intrinsic part of their work, warranting this discussion. 
The Xmath Help provides additional details about these functions and 
examples of their use.

system( )
Sysd=system(A,B,C,D,{dt,inputNames,

outputNames,stateNames,X0})

Sys = system(num,den,{dt,inputNames,outputNames})

Sys = system(Sys,{keywords})
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The system( ) function can create both the transfer-function and 
state-space forms of the system object. It requires four compatibly-sized 
matrices to create a state-space system, or a pair of polynomials to create 
a transfer function. 

You can use optional keywords to store additional information about your 
system. Assigning dt to a positive scalar value indicates that the system is 
discrete, with a sampling period equal to that value. If dt is not specified, 
the system is continuous, with a sampling period defaulting to zero. 
Because information indicating whether the system is continuous or 
discrete is encapsulated within the system object itself, Xmath does not 
have separate functions for discrete- and continuous-time system analysis. 
Systems can be recognized by Xmath’s functions as discrete or continuous 
using the check( ) function and handled accordingly. For more 
information, refer to the Using check( ) with System Objects section. 
The capability to assign a discrete sample rate does not actually discretize 
a continuous-time system, however. For information on discretizing a 
system, refer to the Discretizing a System section.

A shortcut for creating state-space systems with an all-zero D matrix is 
to use a null-matrix specifier ([]) for the D matrix instead of entering an 
appropriately sized zero matrix. This will automatically set the D matrix to 
be a zero matrix with row size equal to the row size of C, and column size 
equal to the column size of B.

In addition, descriptive names for the inputs and outputs of a system can 
be specified as vectors of string names and assigned to the inputNames, 
outputNames, and stateNames keywords. stateNames is valid only 
when used in conjunction with a state-space system, as is the keyword X0, 
which can be used to set a vector of initial values for the states. 

When you have created a system, you can modify it by changing the values 
of any of the keywords discussed in this section by calling system( ) with 
the appropriate keyword setting.

Examples 2-1 and 2-2 illustrate how system( ) can be called to create a 
transfer function and state-space system, respectively. system( ) also can 
be used to change the attributes of an existing system. 

Note In Example 2-3, the [] notation indicates that the D matrix should be an 
appropriately sized (in this case, scalar) zero matrix.
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Example 2-3 Using system( ) to Change the Attributes of an Existing System

sys4=system([0,1;-0.75,0],[1,0]',[0,1],[],

{dt=0.5});

sys4 = system(sys4, {inputNames = "Current",

outputNames = "Velocity", 

stateNames = ["Torque","Angle"]})

sys4 (a state space system) =

A

0 1

-0.75 0

B

 1

0

C

0 1

D

0

X0

0

0

State Names

-----------

Torque Angle 

Input Names

-----------

Current 

Output Names

------------

Velocity 

System is discrete, sampling at 0.5 seconds.

abcd( )
[A,B,C,D,X0] = abcd(Sys)

The abcd( ) function extracts the component A, B, C, and D matrices 
described in equations from a state-space system object as shown in the 
State-Space System Models section. In addition, it returns the initial 
conditions on the states if a fifth output argument is requested.

abcd( ) can be called on systems in either state-space or transfer function 
form. If the system is a transfer function, the conversion to state-space is 
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done internally to return A, B, C, and D, though the format of the variable 
Sys itself remains unchanged. The transfer function must be proper.

Using the systems defined in Examples 2-1 and 2-2, Example 2-4 
illustrates the use of abcd( ).

Example 2-4 Using abcd( ) to Extract the State-Space Matrices

H3=makepoly([2,-1],"s")/makepoly([1,6,8],"s");

sys4=system([0,1;-0.75,0],[1,0]',[0,1],0,

{dt=0.5});

You can extract the state-space matrices from each. 

Note For the transfer function H3, an internal conversion is performed. 

[A3,B3,C3,D3] = abcd(H3)?

A3 (a square matrix) =

-2 1.58114

0 -4 

B3 (a column vector) =

0

2

C3 (a row vector) = -1.58114 1

D3 (a scalar) = 0

[A4,B4,C4,D4,X0] = abcd(sys4)

A4 (a square matrix) =

0 1

-0.75 0

B4 (a column vector) =

1

0

C4 (a row vector) = 0  1

D4 (a scalar) = 0

X0 (a column vector) =

0

0
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numden( )
[num,den] = numden(Sys)

The numden( ) function returns the numerator and denominator 
polynomials comprising a single-input, single-output system in transfer 
function form. If the system is in state-space form, an internal conversion 
is performed to find the transfer function equivalent, but the format of the 
system variable itself remains unchanged. State-space systems used in 
conjunction with numden( ) must be single-input, single-output. 

As noted in the Transfer Function System Models section, common roots in 
the numerator and denominator polynomials are not canceled.

Example 2-5 uses the state-space system from Example 2-2 to illustrate the 
use of numden( ).

Example 2-5 Using numden( ) to Extract the Transfer Function Polynomials

sys4=system([0,1;-0.75,0],[1,0]',[0,1],0,

{dt=0.5});

[num,den] = numden(sys4)?

num (a polynomial) =

-0.75

den (a polynomial) =

(z2 + 0.75)

Because num and den are polynomial objects and not a complete system, 
the discrete sampling time is not explicitly saved. You can use check( ) 
with the convert keyword to map the two internal representations to each 
other, as described in the Using check( ) with System Objects section. 
However, notice that z was used as the polynomial variable, indicating that 
these numerator and denominator polynomials were obtained from a 
discrete-time system. Had the system been continuous, s would have been 
used instead of z.

period( )
dt = period(Sys)

The period( ) function extracts the sample period (in seconds) of a 
system. If the system is continuous, period( ) will return zero. 

In Example 2-5, you found the numerator and denominator polynomials 
corresponding to the discrete state-space system. Example 2-6 combines 
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these polynomials into a transfer-function and uses period( ) to set the 
sampling interval to match that of sys4.

Example 2-6 Using period( ) to Extract the Sampling Period

[num,den]=numden(sys4);

H4 = system(num,den,{dt = period(sys4)})

H4 (a transfer function) =

-0.75

----------- 

(z2 + 0.75)

System is discrete, sampling at 0.5 seconds.

check( ) provides a more concise means of converting between 
state-space and transfer function form, as described in the Using check( ) 
with System Objects section, but this example illustrates how the output of 
one function can be specified directly as keyword input to another.

names( )
[outputNames,inputNames,stateNames] = names(Sys)

The names( ) function extracts matrices of strings representing the input, 
output, and (if the system is in state space form) state names of a system. 

names( ) also can be used to extract information from the PDM and 
polynomial objects. More information on these functions can be found in 
the MATRIXx Help. 

When you create a system without specifying any names, a default set of 
names are assigned to it. Unlike user-specified names, these default names 
are not displayed in the Xmath Commands window. However, all, or any 
subset of the names you select to store with the system still can be extracted 
using names( ) as shown in Example 2-7.

Example 2-7 Using names( ) to Extract the Variable Names Associated with a System

H3 = system(makepoly([2,-1],"s"),

makepoly([1,6,8],"s"));

[outputNames, inputNames] = names(H3)

outputNames (a string) = Output 1 

inputNames (a string) = Input 1 

sys5=system([0,1;-0.75,0],[1,0]',[0,1],0,{dt=0.5,

inputNames = "Current", 
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outputNames = "Velocity",

stateNames = ["Torque","Angle"]});

[,,stateNames] = names(sys5)?

statenames (a row vector of strings)=Torque Angle 

Size and Indexing of Dynamic Systems 
The size of a system object is defined by how many outputs, inputs, and 
(in the case of a state-space system) states it has. You can use the size( ) 
function to find these dimensions. 

You can index into a dynamic system to create a new dynamic system 
which has a subset of the original inputs and outputs:

Sys = Sys1(i, j) is defined to be a system such that y = y1(i) and u = u1(j). 
i and j can both be vectors as well, in which case multiple inputs and 
outputs will be extracted.

The previous definition of indexing was designed with the traditional 
definition of a transfer function in mind.

Using check( ) with System Objects
Several common attributes of systems can be easily determined using 
Xmath’s ability to distinguish between object types and characteristics. 
You can use the check( ) function with systems, as shown in 
Example 2-8, to determine whether a system is in transfer function or 
state-space form, discrete, continuous, or stable. In addition, you can use 
check( ) with the convert keyword to change a system’s representation 
between SISO state-space and transfer-function forms. 

Example 2-8 Using check( ) with a System

a = [1.875,0;0,-0.26];

b = [1;0];

c = [0.5,1];

d = 0;

sys = system(a,b,c,d, {dt = 0.001});

Because this system is discrete and has a pole where magnitude exceeds 1, 
it is not stable.

y q( ) Sys q( ) u q( )×=
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check(sys, {stable})

ans (a scalar) = 0

check(sys, {discrete, ss})

ans (a scalar) = 1

[, tfsys] = check(sys, {tf, convert})

tfsys (a transfer function) =

(z + 0.26)

---------------------

(z + 0.26)(z - 1.875)

initial delay outputs

0

0

System is discrete, sampling at 0.001 seconds.

Discretizing a System
Many systems where behavior derives from physical equations of motion 
can be modeled most naturally as continuous processes, using differential 
equations. Therefore, you often choose to discretize these models for use 
with a digital controller. A number of mathematical methods have been 
developed to approximate the behavior of a continuous system in a 
discrete-time representation with an appropriately fast sampling rate. 
Xmath provides two functions, discretize( ) and 
makecontinuous( ), which encompass a range of these techniques. 
discretize( ) converts a system from its representation as a continuous 
function in the s-domain to a discrete-time z-domain function. 
makecontinuous( ) does the reverse, transforming a discrete system to 
its continuous form. 

discretize( )
SysD = discretize(Sys,{dt,exponential,forward,backward,

tustins,ztransform,polezero,firstorder})

The discretize( ) function has a number of keywords that correspond 
to the different methods of continuous-to-discrete conversion that are 
implemented within Xmath. The sampling interval (in seconds) for the 
discrete system should be set equal to the keyword dt. If no value for dt 
is specified, a default of 0.5 seconds is used. The default discretization 
method used is the exponential (step-invariant) transform. The different 
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discretization methods used based on the specification of each keyword are 
discussed in the following sections.

Numerical Integration Methods: forward, backward, 
tustins
Xmath provides three methods of numerical integration of a differential 
transfer function: the forward and backward rectangular rules, and Tustin’s 
rule (also called the bilinear or trapezoidal transform). 

To convert the system description from a continuous differential equation 
to a discrete difference equation, you approximate the value of the 
derivative in the continuous equation over each dt seconds of time, then 
find the area of the geometric region having width dt and height equal to 
the derivative. You can do this in a number of ways, as discussed in 
[FPW90].

For the forward rectangular method, you assume the incremental area term 
between sampling times k * dt and (k + 1) * dt to be a rectangle having 
width dt and height equal to the integral form of the differential equation at 
time (k + 1) * dt. In essence, you get your amplitude estimate for each 
rectangle by looking forward, hence the name. The backward rectangular 
method arises similarly, except that you get the rectangle’s height by 
looking backward and taking the value of the integral at k * dt. The forward 
rectangular approach tends to overestimate the incremental area somewhat 
and the backward approach tends to underestimate it (though with a 
sufficiently small sampling interval, this may not pose a large problem). 
The trapezoid rule strikes a balance between these two methods by taking 
the average of the rectangles defined by the forward and backward methods 
and using that value as the incremental area in approximating the difference 
equation. 

These approaches can be summarized as substitutions between the 
continuous-time Laplace-transform operators and the discrete z-transform 
operator z as shown in Table 2-1.

Table 2-2.  Mapping Methods for discretize( )

Method of Approximation Continuous to Discrete

Forward rectangular rule:
Keyword: forward

s z 1–
dt

-----------→
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Pole-Zero Matching: polezero
The pole-zero matching method of discretizing a continuous system 
follows from the relation between the continuous s and discrete z frequency 
domains:

where T is the sampling interval to be used for the discrete system. 
Continuous-time poles and finite zeros are mapped to the z-plane using this 
relation. Zeros at infinity are mapped into z = 0, where they do not affect 
the frequency response. 

After the poles and zeros have been mapped, the algorithm tries to 
make sure the system gains are equivalent at some critical frequency. 
If the systems have no poles or zeros at DC(s = 0, z = 1), the discrete-time 
gain is selected such that the system gains match at DC. Alternatively, 
if the systems have no poles or zeros at the Nyquist frequency 
(s = p * j/T, z = –1), the gains are equalized at that frequency. In the 
event that neither of these gains can be matched, no gain is chosen.

Z-Transform: ztransform
This method is a direct Z-transform of the continuous-time transfer 
function, which corresponds to the Z-transform of the impulse response of 
the system. If ztransform is used, you will match the impulse responses 
of the continuous and discrete systems. The responses may differ slightly 
due to round off error.

Hold Equivalence Methods: exponential and 
firstorder
The discretization methods for exponential and firstorder both rely 
on the approximation that the discrete-time response can be represented as 
a hold on the sampled values of the continuous-time response. 

Backward rectangular rule:
Keyword: backward

Tustin’s rule:
Keyword: tustins

Table 2-2.  Mapping Methods for discretize( ) (Continued)

Method of Approximation Continuous to Discrete

s z 1–
zdt

-----------→

s 2 z 1–( )
dt z 1+( )
---------------------→

z esT=
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The exponential keyword assumes that the response value between 
samples is constant and can, therefore, be represented by a zero-order hold 
polynomial. When exponential is specified, the continuous-time step 
response is discretized using the Z-transform, then the result is 
divided by the Z-transform of a step z/(z – 1) to produce the desired 
transfer function.

The firstorder keyword assumes extrapolation between samples 
(connecting sample to sample in a straight line). If firstorder is 
specified, the continuous-time ramp response is discretized using the 
Z-transform and then the result is divided by the Z-transform of a ramp 
z * dt/(z – 1)2 to produce the desired transfer function.

In each of these cases, the appropriate response (impulse, step, or ramp) 
will match the continuous response very closely, with the only error being 
round off error.

While no one method of discretization will always perform best for all 
systems and all sampling times, it is often a good idea to compare the 
frequency response resulting from different discretized models to the 
continuous response. Example 2-9 applies the forward, backward, tustins, 
exponential, and matched pole-zero discretization methods.

Example 2-9 A Comparison of Several Discretization Methods

H = system(0.5*polynomial([-0.36]),

makepoly([1,2.79,2.74,1.11,0.16]));

Create a logspaced vector for the frequency range of the response:

F = logspace(.001,5,200);

Perform the discretization using the different algorithms:

Hd_f = discretize(H,0.1,{forward});

Hd_b = discretize(H,0.1,{backward});

Hd_t = discretize(H,0.1,{tustins});

Hd_z = discretize(H,0.1,{polezero});

Hd_e = discretize(H,0.1,{exponential});

Now you can calculate the magnitude response as a function of frequency,

gainc = 20*log10(abs(freq(H,F)));

gain_f = 20*log10(abs(freq(Hd_f,F)));

gain_b = 20*log10(abs(freq(Hd_b,F)));

gain_t = 20*log10(abs(freq(Hd_t,F)));
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gain_z = 20*log10(abs(freq(Hd_z,F)));

gain_e = 20*log10(abs(freq(Hd_e,F)));

and plot it (as shown in Figure 2-1).

plot ([gainc,gain_f,gain_b,gain_t,gain_z,gain_e],

{legend = ["Continuous", "Forward", 

"Backward", "Tustins", "Pole Zero",

"Exponential"], x_log, 

xlab="Frequency (Hz)",ylab="Magnitude (dB)"})

Figure 2-1.  Comparison of Different Frequency Response Techniques

Although most of the discretizations used would give acceptable 
approximations to the continuous-time response, notice that most of them 
diverge greatly at higher frequencies. You may find it illustrative to run this 
example with larger and smaller sampling intervals to see how the choice 
of sampling rate, as well as the choice of method, affects the accuracy of 
the discretized frequency response.

makecontinuous( )
Sys=makecontinuous(SysD,{exponential, forward,

backward,tustins, ztransform})
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Many of the discretization techniques discussed in the Hold Equivalence 
Methods: exponential and firstorder section can be easily reversed to 
obtain a continuous equivalent to a discrete system. The 
makecontinuous( ) function implements these reverse algorithms 
based on the keyword you specify as shown in Example 2-10. Although 
makecontinuous( ) accepts an input system in any form, it returns the 
continuous-time system as a state-space system.

The forward, backward, and Tustin methods for mapping from the s-plane 
to the z-plane can be easily reversed using the equivalencies shown in 
Table 2-3.

Discrete-to-continuous algorithms using matrix logarithms (to reverse the 
exponential operations involved in doing the z-transform for the impulse 
invariant zero-order hold) are available for the exponential 
(step-invariant) transformation and the ztransform (impulse-invariant) 
methods. A limitation of these methods, however, is that they will not return 
a meaningful continuous equivalent to a discrete system that has pure 
delays (1/z terms), because the logarithm of zero is infinite. 

Example 2-10 Verifying a Discretization Using makecontinuous( )

Create a system:

H = 0.5*polynomial([-0.36])/...

polynomial([-1,-1,-0.395+0.06305*jay,

-0.395-0.06305*jay]);

Form the discrete equivalent using the forward approximation:

Hd_f = discretize(H,0.1, {forward});

Table 2-3.  Mapping Methods for makecontinuous( )

Method of Approximation Discrete to Continuous

Forward rectangular rule:
Keyword: forward

Backward rectangular rule:
Keyword: backward

Tustin’s rule:
Keyword: tustins

z 1 s dt( )+→

z 1
1 s dt( )–
---------------------→

z 1 s dt( )+ 2⁄
1 s dt( )– 2⁄
----------------------------→
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Now convert back to the continuous form:

Hc = makecontinuous(Hd_f, {forward});

[num,den] = numden(Hc)

num (a polynomial) =

(s + 0.36)

den (a polynomial) =

2 

(s + 0.999998)(s + 1)(s + 0.79s + 0.16)

Although makecontinuous( ) restores the continuous-time poles and 
zeros, it cannot match gains precisely.
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3
Building System Connections

Large system models are frequently built by connecting smaller models 
together. You can perform different types of linear system interconnections 
using the Xmath functions discussed in this chapter.

MathScript allows operators (*,+, and so on) to be overloaded—given 
different behaviors when used with different objects. A number of simple 
types of connections have been implemented as overloaded operators on 
systems, while more complex connections are available through 
specialized functions.

Linear System Interconnection Operators
Overloaded operators provide a quick way to perform different types of 
basic connections between systems. Table 3-1 illustrates these operations 
on a pair of systems Sys1 and Sys2 with outputs y1 and y2 and inputs u1 
and u2, respectively.

 
Table 3-1.  Summary of Interconnection Operators

Diagram Description

Sys = Sys1 + Sys2 Parallel connection where y = y1 + y2. The inputs are 
tied together where u = u1 = u2.

Sys = Sys1 – Sys2 Parallel connection where y  =  y1 + y2. In the unary 
case, Sys = –Sys1 where y = –y1. The inputs are tied 
together where u = u1 = u2.

Sys1

Sys2

+
yu

u1

u2

y1

y2

Sys1

Sys2

–
yu

u1

u2

y1

y2
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Sys = Sys2 * Sys1 Cascade connection of Sys1 and Sys2 where the output 
of Sys is y2 and the input is u1.

Sys = Sys1/Sys2 Cascade connection of Sys1 and inverted Sys2 where 
Sys = Sys1 * inv(Sys2), u = u2, and y = y1.

Sys = Sys1\Sys2 Cascade connection of inverted Sys1 and Sys2 where 
Sys = inv(Sys1) * Sys2, u = u2, and y = y1.

Sys = [Sys1;Sys2 Parallel connection where y = [y1;y2]. The inputs are 
tied together where u = u1 = u.

Sys = [Sys1,Sys2 Parallel connection where y = y1 + y2 and 
u =[u1;u2].

Sys = Sys1' If Sys1 is in state-space form and comprises the matrices 
(A1,B1,C1,D1), Sys comprises (A1',C1',B1',D1'). 
If Sys1 is a transfer function, it is converted internally 
to state-space form.

Table 3-1.  Summary of Interconnection Operators (Continued)

Diagram Description

Sys1 Sys2
yu

u1 u2y1 y2

inv(Sys2) Sys1
yu

u2 u1y2 y1

Sys2 inv(Sys1)
yu

u2 u1y2 y1

Sys1

Sys2

y
u

u1

u2

y1

y2

Sys1

Sys2

+
y

u1

u

u2

y1

y2
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Dynamic systems also can be flexibly combined with scalars and 
compatibly sized matrices using the operators in Table 3-1. A compatibly 
sized matrix is one having the same dimensions as the dynamic system’s 
D matrix (row size equal to the number of outputs and column size equal 
to the number of inputs). 

Operations performed with a dynamic system and a matrix M as the 
operands internally handle M as a pure-gain system implemented as 
system([],[],[],M).

The * operator can be used with a system and a PDM to find the time 
response of the system to the general input data stored in the PDM. For 
a detailed description of time simulation in Xmath, refer to the General 
Time-Domain Simulation section of Chapter 4, System Analysis.

Sys = adj[Sys1] If Sys1 is in state-space form and comprises the matrices 
(A1,B1,C1,D1), Sys is the adjoint system and comprises 
(–A1',C1',B1',D1'). If Sys1 is a transfer function, it is 
converted internally to state-space form.

p1/p2 Alternate method to create a system, where p1 and p2 
are the numerator and denominator polynomials, 
respectively; does not allow the use of keywords.

Sys = inv(Sys1) The inverse (pseudoinverse) of a system can be found 
using inv(Sys1). If Sys1 is a transfer function, 
inv(Sys1) is the reciprocal of the transfer function. 
If Sys1 is a state-space system (A1,B1,C1,D1), then 
Sys = system(A,B,C,D) where A,B,C,D are defined 
as follows:

D = pinv(D1)
A = A1-B1*D*C1
B = B1*D
C = -D*C1

Table 3-1.  Summary of Interconnection Operators (Continued)

Diagram Description
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Linear System Interconnection Functions
afeedback( ), append( ), connect( ), and feedback( ) connect 
dynamic systems in state–space or transfer–function form to produce a 
larger system in state-space form. The following restrictions apply to all 
of these functions:

• Both systems must have the same sample rate.

• Improper dynamic systems (systems with more zeros than poles) are 
not allowed.

• If the systems to be connected are in transfer-function form, they must 
be expressed in the same dependent variable.

In describing the algorithms used in these connection functions, we will 
often refer to the component matrices of a state-space system Sys1 as A1, 
B1, C1, and D1.

afeedback( )
Sys = afeedback(Sys1,{Sys2})

The afeedback( ) function connects two dynamic systems in a feedback 
loop, and obtains a single system representation for the complex loop. 
Sys is organized as shown in Figure 3-1. Additional external inputs to the 
feedback path are included with outputs from the feedforward path. 
Figure 3-1 illustrates that outputs of the feedback path system are included 
with forward path outputs. For an example of how to use afeedback( ), 
refer to Example 3-1. 

Figure 3-1.  afeedback System Configuration

e1

e2

u1

u2

y1

y2

Sys1

Sys

+

+
+

–

Sys2
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• By default, feedback is defined to be negative.

• The number of outputs from the first system must equal the number of 
inputs to the second system.

• The number of outputs from the second system must equal the number 
of inputs in the first.

• Both systems must have the same sample rate.

• Improper dynamic systems (systems with more zeros than poles) are 
not allowed.

• When only one system is specified, it must be square (it must have an 
equal number of inputs and outputs).

Example 3-1 Using afeedback( ) to Connect Two Systems

Sys1 = system([.5,1;0,2],[1,0]',[0,1],0);

Sys2 = system([1,-.2;1,0],[1,0]',[1,1],0);

saf = afeedback(Sys1,Sys2);

Algorithm
If only one system input (Sys1) is provided to afeedback( ), the second 
input (Sys2) defaults to a zero-state system with unity gain. This is 
analogous to a state-space system with NULL values for the A, B, and C 
matrices, and with an identity matrix for D. Notice that you use the Xmath 
definition of a non-square identity matrix. In this case, the row dimension 
of D equals the number of inputs to Sys1, and the column dimension equals 
the number of outputs of Sys1. In the following discussion, you denote the 
state-space matrices of Sys1 by A1, B1, C1, and D1, and you follow the same 
convention for Sys2.

The two systems are first internally converted to a state-space form, if 
necessary, and subdivided into the A, B, C, and D state-space matrices. 
Scaling matrices S1 and S2 are computed for Sys1 and Sys2 as follows: 

S1 = I + D1D2

S2 = I + D2D1

Additionally, you define:

B1s = B1/S2 and D1s = D1/S2

B2s = B2/S1 and D2s = D2/S1

Matrix right-division problems must be well-posed, with the scaling 
matrices S1 and S2 nonsingular. afeedback( ) displays an error message 
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if the condition estimate for either matrix is less than eps. For more 
information on this condition estimate, refer to the MATRIXx Help for the 
Xmath function rcond( ). 

Using Sys to denote the state-space representation for the complete 
feedback loop, you can express its component matrices A, B, C, and D 
as combinations of the component matrices you obtained from Sys1 and 
Sys2. The full matrices used with two input systems are shown in the next 
example. In the case of a constant-gain feedback, A, B, C, and D are 
computed using only the matrix partitions shown in bold type.

The initial conditions for the systems are appended to each other 
columnwise.

afeedback( ) cannot be used with improper transfer functions—systems 
having more zeros than poles—because this algorithm is strictly 
state-space. 

append( )
Sys = append(Sys1,Sys2)

The append( ) function appends two dynamic systems in a form suitable 
for use with the connect( ) function (refer to the connect( ) section). Sys 

A A1 B1sD2C1– B1sC2–

B2sC1 A2 B2sD1C2–
=

B B1s B1sD2–

B2sD1 B2s
=

C S1 C1⁄ D1sC2–

D2sC1 S2C2
=

D D1s D1D2s–

D2D1s D2s
=
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is created by appending the inputs, outputs, and states of Sys1 and Sys2. 
A larger number of systems can be appended by appending two at a time. 

• Both systems must have the same sample rate.

• Improper dynamic systems—systems with more zeros than poles—are 
not allowed, because Sys is represented in state-space form.

The output is a dynamic system in block form as shown in Figure 3-2.

Figure 3-2.  Output of a Dynamic System

For an example of how to use append( ), refer to Example 3-2.

Example 3-2 Using append( )

s3 = system(makepoly([1,2]), makepoly([1,3,5,0]));

s4 = system(makepoly([1]), makepoly([1,4,4]));

sap = append(s3,s4);

In the following discussion, the component state-space matrices of Sys1 are 
denoted by A1, B1, C1, and D1, and you follow the same convention for Sys2. 

The algorithm for append( ) is done strictly using the state-space 
representations of Sys1 and Sys2. For this reason, Sys1 and Sys2 cannot 
be improper transfer functions (transfer functions having more zeros than 
poles). The component A, B, C, and D matrices of Sys1 and Sys2 are 
extracted using the abcd( ) function. The A, B, C, and D matrices 
comprising Sys are obtained as shown in the following example, where the 
zero matrix elements span as many rows and columns as necessary.

u1

y2

y1

u2

Sys1

Sys

Sys2
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append( ) performs a check to make sure both Sys1 and Sys2 have the 
same sample rate, and adopts this rate for the appended system. Any initial 
conditions on the states are also appended columnwise.

connect( )
Sys = connect(Sys1,{K,M,N})

The connect( ) function performs a general interconnection around a 
system. This provides two basic capabilities: 

• constant gain feedback

• general input–output interconnection

In its simplest form, connect( ) can be used to wrap constant gain 
feedback around a system. The keyword K, used to specify feedback gain, 
also can be used to specify which outputs are fed back to the input of the 
system. By specifying the optional keywords M and N, you also can specify 
input and output gains.

General input–output interconnection is applicable to the block form 
system provided by append( ), as described in the append( ) section. 
Parameters used in the connect command are illustrated in Figure 3-3. 
Notice that feedback is defined with a positive sign.

Figure 3-3.  Parameters Used with the connect Command

A A1 0
0 A2

= B B1 0
0 B2

=

C C1 0
0 C2

= D D1 0
0 D2

=

u1

uk

u yy1
Sys1 N

Sys

M
+

+

K
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• By default, feedback is defined to be positive. To enforce negative 
feedback, specify connect(Sys,-K).

• A “selection matrix” has a single 1 in each row; the rest of the row 
contains zeros. This is useful for indicating the subset of system inputs 
and outputs to be used. In many cases, however, it is simpler to extract 
desired inputs and outputs through indexing.

• Both systems must have the same sample rate.

• Improper dynamic systems—systems with more zeros than poles—are 
not allowed.

The number of outputs in the combined system is the sum of the number of 
outputs from the two systems you are appending. For an example of how to 
use gains for the input, the output, and the fed-back data, refer to 
Example 3-3.

Example 3-3 Using connect( ) to Perform a General Output-Input Connection

tfsys=system(makepoly([1,2]),makepoly([1,3,0]))

tfsys (a transfer function) = 

x + 2

-------

 2

x + 3x 

initial integrator outputs

0

0

Input Names

-----------

Input 1 

Output Names

------------

Output 1 

System is continuous

connect(tfsys,0.12,2,1.5)

ans (a state space system) =

A

-3 1 

-0.12 0.12

B

0
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2

C

-1.5 1.5

D

0

X0

0

0

Algorithm
For the feedback system shown in Example 3-3, you can write the 
following system equations:

Combining these equations with the equation for the positive feedback 
input term:

and multiplying by the input and output gains M and N, you obtain the 
following state-space equations describing the entire system between input 
u and output y. If you do not specify any values for the gain matrices, 
K defaults to zero (no feedback) and M and N default to appropriately-sized 
identity matrices (unity gain on the input and output).

This algorithm assumes that the closed-loop system is well posed to ensure 
that Sys will be proper. The (I – KD1) term must be invertible, and a 
warning appears if the condition estimate of the term (refer to rcond) is 
less than eps. 

x· A1x B1u1+= y1 C1x D1u1+=

u1 Ky1 Mu+=

x· A1 B1 I KD1–( ) 1– KC1+( )x B1 I KD1–( ) 1– Mu+=

y N I KD1–( ) 1– C1x ND1 I KD1–( ) 1– Mu+=
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feedback( )
Sys = feedback(Sys1,{Sys2})

The feedback( ) function connects two dynamic systems together in a 
feedback loop as shown in Figure 3-4.

• By default, feedback is defined to be negative.

• Both systems must have the same sample rate.

• Improper dynamic systems (systems with more zeros than poles) are 
not allowed.

• When only one system is specified, it must be square (it must have an 
equal number of inputs and outputs).

Figure 3-4.  Feedback System Configuration

For an example of how to implement unity gain feedback using the 
feedback( ) function, refer to Example 3-4.

Example 3-4 Implementing Unity Gain Feedback Using feedback( ) 

tfsys2 = polynomial(-1)/polynomial([-2,-3]);

feedback(tfsys2) # Note that this implements 

# negative unity gain feedback

ans (a state space system) =

A

-2 1

1 -4

B

0

1

C

e1
u1 y1Sys1

Sys

+
–

Sys2
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-1 1

D

0

X0

0

0

State Names 

----------- 

Input Names

-----------

Input 1 

Output Names

------------

Output 1 

System is continuous

Algorithm
The system used for the feedback loop, Sys2, is optional. If it is not 
specified, a default state-space system is used with NULL matrices for A2, 
B2, and C2 and an identity matrix for D2 so that unity gain feedback is 
implemented. 

From Figure 3-4 and the state-space definitions of the systems, you derive 
the following equations:

x·1 = A1x1 Be1+

y1 = C1x1 D1e1+

x·2 = A2x2 B2y1+

y2 = C2x2 D2y1+

e1 = u1 y2–
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The single system resulting from the feedback combination of Sys1 and 
Sys2 has u1 as its input, y1 as its output, and a state vector consisting of the 
appended states of Sys1 and Sys2. Using these five equations to find the 
state-space dynamics of the complete system results in the overall system 
description.

This algorithm assumes that the closed-loop system is well constructed 
(the (I + D2D1) and (I + D1D2) terms must be invertible). This condition 
ensures that the output system Sys will be proper. 

y1 I D1D2+( ) 1– C1 D1 I D2D1+( ) 1– C2–
x1
x2

= +

x· x·1
x·2

= •

x1
x2

B1 I D2D1+( ) 1–

B2 I D1D2+( ) 1– D1
u1+

= A1 B1 I D2D1+( ) 1– D2C1– B– 1 I D2D1+( ) 1– C2

B2 I D1D2+( ) 1– C1 A2 B2 I D1D2+( ) 1– D1C2–
•

D1 I D2D1+( ) 1– u1
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4
System Analysis

This chapter discusses time-domain solutions of the equations underlying 
transfer functions and state-space system models, and what these solutions 
tell us about the stability of the system. Xmath provides a number of 
functions for performing this system analysis and computing the 
time-domain system response to both general and specific “standard” 
inputs.

Time-Domain Solution of System Equations
Given the state-space equations:

you obtain: 

letting x0 denote any initial conditions on the system states. The integral 
term in the preceding equation defines a convolution integral. Using * to 
represent the convolution operator, the time-domain system output for all 
time t ≥ 0 is:

(4-1)

The response Y(s) of the system (with zero initial conditions) to a unit 
impulse input δ(t) is H(s), the transfer function representation from the 
Transfer Function System Models section of Chapter 2, Linear System 
Representation. You accordingly term h(t), the inverse Laplace transform 
of H(s), the impulse response.

x· Ax Bu+=

y Cx Du+=

x t( ) eAtx0 eAτBu t τ–( )dτ

0

t

∫+=

y t( ) ceAtx0 h t( )*u t( )( )+=

h t( ) CeAtB Dδ t( )+=
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The time-response of discrete systems is found directly as a summation of 
the information from preceding time points in the state and input histories. 
Using * to indicate discrete convolution, you can express the time domain 
output as a function of the discrete impulse response:

(4-2)

System Stability: Poles and Zeros
After you have general expressions for the response of a system over time, 
according to Equations 4-1 and 4-2, you can assess the stability of the 
system. For the purposes of system analysis within Xmath, you define a 
stable system as one where output does not grow without bound for any 
bounded input or initial condition. A necessary and sufficient condition for 
this type of bounded-input bounded-output (BIBO) stability is:

Continuous systems are BIBO stable if and only if all poles of the system 
are in the left half of the complex plane; discrete systems are BIBO stable 
if and only if all poles are within the unit circle in the complex plane. 

For a coprime transfer function H(q) (one having no root cancellations 
between the numerator and the denominator), the poles are the roots of the 
denominator of H(q). H(q) is infinite at these values. Values of q for which 
the numerator of H(q) is zero are termed the zeros of the system. 

The poles of a system in transfer-function form are identical to the 
eigenvalues of the A matrix in that system’s equivalent state-space 
representation. 

For systems in transfer-function form, zeros are easily defined as the 
polynomial roots of the numerator. You define the system matrix for a 
state-space system as 

yk = CAkx0 hk*uk( )+

hk = CAk 1– B k 0>( )
D k 0=( )

h t( ) M ∞< <

0

∞

∫

S λ( ) λI A– B
C– D

=
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and define the zeros of S(λ) as any values of  λ for which the system matrix 
drops rank. For single-input single-output systems this is equivalent to the 
polynomial zeros of the transfer-function numerator. This definition is 
somewhat more complex for MIMO systems.

In terms of the dynamic response associated with the poles and zeros of a 
system, a pole is said to be stable if the response it contributes decays over 
time. If the response becomes larger over time, the pole is said to be 
unstable. If the response remains unchanged over time, you describe the 
pole that causes it as neutrally stable. All the closed-loop poles of a system 
must be stable to describe the system as stable.

poles( )
p = poles(Sys)

The poles( ) function returns a vector listing all the poles of a system. 
If the input system Sys is in transfer-function form, poles( ) obtains the 
poles from the roots of the transfer function’s denominator (which are 
automatically stored if the system is in zero-pole format or if the roots have 
been previously calculated). If Sys is in state-space form, the poles are 
computed as the eigenvalues of the A matrix. To see how to use poles( ) 
with a system in transfer function form, refer to Example 4-1.

Example 4-1 Using poles( ) with a System in Transfer Function Form

H = 0.5*polynomial([-0.36])/...

makepoly([1,2.79,2.74,1.11,0.16]);

poles(H)

ans (a column vector) =

-0.395 + 0.0630476 j

-0.395 - 0.0630476 j

-1

-1 

zeros( )
[z,k] = zeros(Sys)

The zeros( ) function finds the invariant zeros, the values of λ at which 
R(λ) = 0 and S(λ) lose rank, and gain is returned only for SISO systems 
(of a system Sys). If Sys is in transfer function form, the zeros are obtained 
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directly from the roots of the transfer function numerator. If Sys is in 
state-space form, the definition of its zeros arises from the system matrix,

(4-3)

and its MIMO transfer function:

(4-4)

Defining n as the number of states in the system, p as the number of outputs, 
and m as the number of inputs, the normal rank of S(λ) is n + min(m,p). 
If the rank of S(λ) equals the normal rank, the system is nondegenerate. 
The values of λ, where R(λ) = 0 and S(λ) loses rank, are the invariant zeros 
of the system. For degenerate cases in which the normal rank of S(λ) is less 
than n + r, the zeros are defined analogously. 

If a system is minimal (that is, no other system with lower order and the 
same R(λ) exists), these invariant zeros are termed transmission zeros. 
When the matrix in Equation 4-4 loses rank for some value λ = λ0, there 
exists a vector [x0' u0']' of initial states and inputs such that:

Thus, there exists an initial state x0 such that the output y is zero for all 
values of the input function defined over time t as u0eλt. Such zeros (λ0) 
derive the name transmission zero, because their effect is to block 
transmission of the system input to the output. 

Note zeros = system zeros = {invariant zeros} ∩ {transmission zeros}.

For an example using zeros( ) with a state-space system, refer to 
Example 4-2. For more details on this topic, refer to [Kai80] and [DeS74]. 

Example 4-2 Using zeros( ) with a State-Space System

Sys=system([-2.3,0.01,5.1;0,-0.35,-2;0,2,-.35],

[1,.25,.25]',[1.34,0,0],0);

[z,k] = zeros(Sys)

S λ( ) λI A– B
C– D

=

R λ( ) C λI A–( ) 1– B D+=

λ0I A– B
C– D

x0
u0

0=
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ans (a column vector) =

-0.98875 + 2.4773 j

-0.98875 - 2.4773 j

k (a scalar) = 1.34P

Algorithm
The algorithm used for state-space zero computation creates a 
reduced-order S(λ), using Householder reflections to do the necessary 
orthogonal row and column compressions of the state-space matrices. 
The eigenvalues of this reduced matrix are then found using QZ. This 
method handles the degenerate case and systems with zeros at infinity 
[EmV82]. 

Note zeros( ) also can be used as a matrix building function when used with scalar or 
matrix input. For more details on this usage, refer to the MATRIXx Help. 

Partial Fraction Expansion
By inverse Laplace or z-transforming a transfer function, you can identify 
the impulse response based on knowledge of the system pole and zero 
locations. The most convenient form to use in doing this is the partial 
fraction expansion of the transfer function. Each term of the partial fraction 
expansion has a constant numerator—the residue—and a pole term 
denominator, as shown in the following equation, where p2 is a repeated 
pole, and p4 and p5 are a conjugate pair:

Each pk represents a pole of the system, and the corresponding rk is the 
residue at that pole. If pk is a repeated pole, it has M residues, where M is 
the multiplicity of the pole. Complex pole pairs have complex residue pairs. 
If the transfer function contains a constant (or feedthrough) term, this term 
is represented by the scalar value C in the preceding equation. The values 
of the residues give the magnitude of the response from the inverse 
transform of the respective partial fraction terms. For an example of 
dynamic response with partial fraction expansion, refer to Example 4-3. 
[Oga70] provides a good reference on partial-fraction expansion for 
different orders of complex and real poles. [ChB84] contains a thorough 
mathematical treatment of residues. 

H q( ) C
r1

q p1+
--------------

r2
q p2+( )2

---------------------
r3

q p3+
--------------

α4q α5+

q p4+( ) q p5+( )
--------------------------------------- …

rn
q pn+
--------------+ + + + + +=
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Example 4-3 Dynamic Response through Partial Fraction Expansion

To illustrate how you can examine the stability and dynamic response of a 
system using Xmath, start with the open-loop transfer function system

You close a unity feedback loop around this system, as shown in Figure 4-1.

Figure 4-1.  Constructing the Closed-Loop System Gcl(s) from the Open-Loop System 
G(s), with Input U(s) and Output Y(s)

You can derive the expression for the closed-loop transfer function Gcl(s):

Calculate the closed-loop transfer function. 

Note You convert the state-space system returned by feedback( ) to a transfer function 
using check( ).

sys = polynomial(-0.5)/polynomial([0,0,-2,-10]);

syscl=feedback(sys);

[,syscl] = check(syscl,{tf, convert})

syscl (a transfer function) =

(s + 0.5)

-------------------------------------------------

 2 

(s + 1.95266)(s + 10.0118)(s + 0.0354992s + 0.02...

initial integrator outputs

0

0

G s( ) s 0.5+( )
s2 s 2+( ) s 10+( )
-----------------------------------------=

V(s)u(s) Y(s)
G(s)

Gcl(s)

+

–

V s( ) U s( ) Y s( )–=

Y s( ) G s( )V s( )= Gcl s( ) Y s( )
U s( )
----------- G s( )

1 G s( )+
---------------------= =⎝ ⎠

⎛ ⎞
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0

0

Input Names

-----------

Input 1 

Output Names

------------

Output 1 

System is continuous

You can examine the stability of Gcl(s) by representing it as a sum of partial 
fractions, using the residue( ) function.

residue(syscl)

ans (a pdm) =

Poles | 

-------------------------+-----------------------

-0.0177496 - 0.158936 j | Order 1 0.0180045 + ...

-0.0177496 + 0.158936 j | Order 1 0.0180045 -...

-1.95266 | Order 1 -0.0478224

-10.0118 | Order 1 0.0118134

residue( ) returns a PDM with the poles as the domain elements, and the 
associated dependent matrices being the residue at each pole. It also can be 
expressed in the following form:

Using a table of inverse Laplace transforms to convert this expression to the 
transient time response rather than a complex frequency response, you can 
rewrite the time response G(t) as:

Notice from this example that because all the poles are in the left half plane, 
the response each contributes is an exponential which decays with time, so 
this closed-loop system is stable. 

Gcl s( ) 0.0478–
s 1.95+( )

------------------------ 0.0118
s 10.012+( )

------------------------------+ +=

0.036 s 0.01775+( ) 0.16065 0.1589( )+
s 0.01775+( )2 0.1589( )2+

----------------------------------------------------------------------------------------------

e 0.018 t– 0.036 cos(0.1589t) 0.160 sin(0.1589t)+( )

G t( ) 0.0478e– 1.95 t– 0.0118e 10.012t–+= +
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Figure 4-2.  Transient Response of the Closed-Loop System as a Function of Time

You also can calculate the impulse response directly with 

t = [0 : 0.1 : 350 ];

hi = impulse(syscl,t);

plot(hi, { xlab = "Time (sec)", ylab = "Transient 

Response"})

Calculating the impulse response gives you the transient response shown in 
Figure 4-2. 

Notice that this response actually takes quite a while to die out because of 
the small time constants, which correspond to small pole values, in the 
exponential terms. This is why poles with a small magnitude are frequently 
called “slow” poles, whereas poles with a large magnitude contribute a 
response which decays quickly and thus are called “fast” poles.

residue( )
[rp,C] = residue(sys,pls,ordr,{isVector,tol})

The residue( ) function calculates the nth-order residue of a 
transfer-function form system at any of its poles, including Infinity. 
It returns a PDM rp where domain contains the pole locations and where 
dependent matrices contain the residues corresponding to each pole. 
pls and ordr are optional inputs allowing you to specify the pole values 
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and orders for which the residue(s) should be found. If a user-specified 
value for pls is not actually a pole of the system or if the order requested 
is greater than the multiplicity of the pole, the corresponding residue is 
returned as zero. C contains the value of the constant term. 

Example 4-4 uses the transfer function from Example 2-10, Verifying a 
Discretization Using makecontinuous( ).

Example 4-4 Calculating the Residues of a System

G= system(0.5*polynomial([-0.36]),

polynomial([-1,-1,-0.395+0.06305*jay,

-0.395-0.06305*jay]));

Rp=residue(G)

Rp (a pdm) =

 Poles |  

-------------------+-----------------------------

-0.395 - 0.06305 j | Order 1 0.738493 - 0.2277 j

 | 2 0 

-------------------+-----------------------------

-0.395 + 0.06305 j | Order 1 0.738493 + 0.2277 j

 | 2 0 

-------------------+-----------------------------

-1 | Order 1 -1.47699 

| 2 -0.864864 

-------------------+-----------------------------

combinepf( )
Sys = combinepf(Rp,C,{var})

combinepf( ) reverses the operation performed by residue( ), 
combining partial fractions into a single transfer function. It expects a PDM 
of the form shown in Example 4-4 as input.

Use combinepf( ) to convert partial fractions to a transfer function.

Using the variable Rp you obtained in Example 4-4:

G2=combinepf(Rp, {var = "s"})

G2 (a transfer function) =

0.5s + 0.18

---------------------------

2 2 
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(s + 1) (s + 0.79s + 0.16)

initial integrator outputs

0

0

0

0

Input Names

-----------

Input 1 

Output Names

------------

Output 1 

System is continuous

Note G2 matches the system G where residues were computed in Example 4-4.

General Time-Domain Simulation
When modeling a dynamic system and trying to determine its response to 
the input values it is likely to receive in use, you generally will want to 
simulate system behavior with more general input signals than the zero or 
step inputs used in initial( ), impulse( ), and step( ). To do this, 
use the * operator between a dynamic system object and a PDM containing 
the input data you want to use in the simulation. 

Borrowing from the standard frequency response notation for a system 
where:

Xmath defines the operation system*PDM as a time domain simulation. 
Thus for any dynamic system Sys (continuous or discrete) and for a PDM 
u representing the external stimulus as a function of time, the operation 
y = Sys × u creates a PDM y which contains the outputs of the system as 
a function of time.

For a dynamic system with ny outputs and nu inputs, the input vector is 
defined to be ny × 1 and the output vector is ny × 1. Thus the input PDM 
u should be m × 1 × p, where p is the number of time points in u.

y s( ) H s( ) u s( )×=
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Often it is desirable to run several simulations with different inputs. In this 
case, you can define a PDM whose columns contain the input vectors for 
the different simulations. Then u will be ny × q × Nsamp, where q is the 
number of different simulations to be run. The resulting y will be 
ny × q × Nsamp, with each column of the PDM corresponding to a different 
simulation.

The input PDM must have a regular domain—that is, the interval between 
each domain value and the one succeeding it must be the same over all 
points in the domain. If the system is discrete, the domain intervals must be 
equal to the system’s sampling period. If the system is continuous, it is 
discretized using the exponential (zero-order hold) method, with the 
sampling interval set equal to the input domain interval spacing. 

Note For accurate results, you need to make sure this sampling interval is small enough 
that discretization effects are negligible. 

The next step is to create a general signal and store it as a PDM where 
domain is time as shown in Example 4-5. Because you are using a SISO 
system, this input is a single-channel PDM. 

Example 4-5 Performing a General Time-Domain Simulation

t = 0:0.1:15;

osig = ones(1,30);

sig = [0*osig,0.5*osig,osig,0.5*osig,0*ones(1,31)];

U = pdm(sig,t);

Create the system:

Sys = system([-2.3,0.01,5.1;0,-0.35,-2;0,2,-.35],

[1,.25,.25]',[1.34,0,0],0);

and perform the simulation:

Y = Sys*U;

To see how well the system tracks the input signal, plot the input, 
as follows, and the system’s response, shown in Figure 4-3.

plot ([U,Y], {legend = ["Input Signal",

"System Response"],line_color = "black", 

xlab = "Time (sec)", ylab = "Amplitude"})



Chapter 4 System Analysis

Xmath Control Design Module 4-12 ni.com

Figure 4-3.  System Time Response to a Series of Step Signals

The (system)*(PDM) construct for performing time-domain simulation 
is used analogously no matter how many inputs the system has. For a 
multi-input, multi-output system, the number of rows of the input PDM 
must match the number of inputs of the system. For an example of general 
time-domain simulation for a MIMO system, refer to Example 4-6.

Example 4-6 General Time-Domain Simulation for a MIMO System

sys = system([0,1,0;0,0,1;-2,-4,-3],

[0,1;1,0;-1,1],[0,1,-1;1,2,1],[]);

u = pdm([sin(-3*pi:0.01:3*pi);

cos(-3*pi:0.01:3*pi)],{rows=2,columns=1});

y = sys*u;
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Impulse Response of a System
An impulse input to a system is defined somewhat differently depending on 
whether the system is discrete or continuous. For a continuous-time system, 
an impulse is a unit-area signal of infinite amplitude and infinitely small 
duration occurring at time t = 0, and having value zero at all other times. 
For a discrete system, an impulse can be thought of as a physical pulse 
which has unit amplitude at the first sample period and zero amplitude for 
all other times.

The Laplace transform of the continuous-time impulse—often referred to 
as δ(t)—is 1. Thus, the Laplace transform of a output of a system to a unit 
impulse is merely its transfer function H(s), as discussed in the 
Time-Domain Solution of System Equations section. 

A similar definition, using the z-transform, can be made for the 
discrete-time impulse response. However, the values of the impulse 
response of a discrete system also have the property that they define the 
Markov parameters for that system. Based on the state-space representation 
of the system, these parameters are defined as the values 

These parameters are uniquely determined by the transfer function of the 
system [Kai80]:

and they also are the terms of the discrete impulse response.

impulse( )
y = impulse(Sys,t)

The impulse( ) function computes the impulse response of a dynamic 
system. The time vector, t, is an optional input. If not specified, a default 
time range will be computed using deftimerange( ). Refer to the 
deftimerange( ) section. For a continuous-time system, the impulse 
response is calculated at each point in the time vector. For a discrete 
system, the first n Markov parameters are returned, where n is the length 
of the time vector (which must be regularly spaced). 

hi CAi 1– B i, 1 2, … },={=

H z( ) C zI A–( ) 1– B hiz
i–

i 1=

∞

∑= =
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Note A continuous system and its discrete-time equivalent (computed using the 
impulse-invariant z-transform) have impulse responses differing only by a factor of 1/dt.

impulse( ) computes the impulse response by using the B matrix from 
the system’s state-space representation as the initial conditions. A system 
with ni inputs has ni initial conditions, each of which is set up as a column 
of the B matrix. The impulse response is then a time-domain simulation of 
the system using an appropriately-sized zero input. 

The output y is a PDM where domain is the time vector t. Each dependent 
matrix in y has as many rows as there are outputs of Sys, and as many 
columns as there are inputs of Sys. Thus the (i,j,k) element of y is the 
impulse response at output i from input j at time k. In Figure 4-4, where 
all the poles of this continuous system are stable (in the left half of the 
complex plane), the impulse response eventually dies out to zero. For an 
example of a 15-second impulse response of a stable state-space system, 
refer to Example 4-7.

Example 4-7 15-second Impulse Response of a Stable State-Space System

Sys = system([-2.3,0.01,5.1;0,-0.35,-2;0,2,-.35],

[1,.25,.25]',[1.34,0,0],0);

Yt = impulse(Sys,0:0.1:15);

plot (Yt, {xlab = "Time (sec)",

ylab = "Amplitude"})
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Figure 4-4.  15-Second Impulse Response

deftimerange( )
tvec = deftimerange(Sys)

deftimerange( ) computes a regular time vector (in units of seconds) 
that can be used in time-domain simulations to observe the effects of all or 
most of the input system’s dynamics, as indicated by pole and zero location. 

Within deftimerange( ), the poles of the system are obtained using 
poles( ). For continuous-time systems, the poles are scaled by a factor 
of 1/2π (to convert from radians) and the time constant (in seconds) is 
obtained as the reciprocal of four times the value of the pole with the 
maximum absolute value (the “fastest” pole). For discrete-time systems, 
the logarithm of the poles is taken and scaled by the sampling interval. The 
sampling interval is automatically used as the step size for the tvec time 
vector. If all system poles are integrators, the step size defaults to 0.01. 
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The maximum time, Tmax, is computed as follows, with vP denoting the 
vector of scaled poles and dt the period:

Tmax=abs(log(.05)/...

max(real(vP(find(real(vP)<>0)))))

If Tmax == null # all poles purely imaginary 

Tmax=100*dt

endIf

Tmax=max(Tmax,10*dt) 

tvec=0:dt:Tmax

Though deftimerange( ) calls minimal( ) to remove any pole-zero 
cancellations, it does not consider the location of the system zeros in 
computing the time vector. As a result, if Sys has zeros that are more than 
a decade beyond its maximum or minimum poles, the effects of these zeros 
may not be apparent in a time response calculated using tvec. You should 
supply your own time vector to impulse( ), initial( ), and step( ) 
in these cases. 

System Response to Initial Conditions
It is often assumed that the states of a system have zero initial conditions, 
and the X0 field of a state-space system object correspondingly defaults to 
zero. In many cases, however, you need to examine the system response to 
a given set of nonzero initial conditions; a common system design goal is 
that this response become zero (or negligibly small) as quickly as possible. 
The Xmath function initial( ) allows you to do this. You also can use 
superposition to calculate forced initial condition response. 

initial( )
Y = initial(Sys,T,{X0})

The initial( ) function computes the unforced response of a system 
from its initial conditions. By default it uses the initial conditions stored 
with the input system itself, but an alternate set of initial conditions can be 
specified as the keyword X0. A time vector (with spacing equal to the 
sampling period of the system if it is discrete) also can be specified, or 
initial( ) can compute a default time vector internally using 
deftimerange( ). 
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The simulation performed in initial( ) uses an input of zero for each 
point in the time vector. The output Y is a PDM where domain is the time 
vector. 

By varying the initial values of the states individually, you can determine 
which is the most sensitive. For an example using initial( ) to 
determine the sensitivity of the states, refer to Example 4-8.

Example 4-8 Using initial( ) to Determine the Sensitivity of the States

Sys = system([-2.3,0.01,5.1;0,-0.35,-2;0,2,-.35],

[1,.25,.25]',[1.34,0,0],0);

ic1 = initial(Sys, 0:.1:15, {X0 = [1,0,0]});

ic2 = initial(Sys, 0:.1:15, {X0 = [0,1,0]});

ic3 = initial(Sys, 0:.1:15, {X0 = [0,0,1]});

plot ([ic1,ic2,ic3], {xlab = "Time (sec)",

legend = ["State 1", "State 2", "State 3"],

ylab = "Amplitude"})

Figure 4-5.  15-Second System Response to Unity Nonzero Conditions 
at Each of the States

In Figure 4-5, notice that the value of the second state has the highest 
maximum value and takes the longest to “zero out.”
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Step Response
The response of a system to a unit step input is one of the most commonly 
used measures of how well a given control system’s output tracks the 
system input. A unit step is a time signal which is zero up until the 
beginning of the time period of interest, and one thereafter. This indicator 
is popular because it is easy to compute and interpret. It also is 
mathematically possible to calculate the response to any input if the 
response to a unit step is known. The performance measures associated 
with the step response are as follows:

• Delay time (td)—The time required for the response to reach half its 
final value.

• Rise time (tr)—The time required for the response to rise from 10% 
of its final value to 90% of its final value.

• Peak time (tp)—The time required for the response to reach the peak 
value of its first overshoot.

• Maximum overshoot (Mp)—The response value which most exceeds 
unity, expressed as a percent.

• Settling time (ts)—The time required for the response to reach 5% of 
its final value.

These performance measures are obtained easily with a few lines of 
MathScript, as demonstrated in Example 4-9. For a plot of these 
performance measures, refer to Figure 4-6.

step( )
Y = step(Sys,T)

The step( ) function computes the unit step response of a dynamic 
system over a time period which can be specified with the optional time 
vector T. If T is not specified, step( ) computes a default time vector 
using deftimerange( ). 

The output, Y, is a PDM where domain is the time vector and dependent 
matrices have row size equal to the number of inputs and column size equal 
to the number of outputs. 

Example 4-9 Performance Measurements for a Step Response

Y = step(Sys, 0:.1:15);

plot (Y,{x_lab = "Time (sec)", 

ylab = "Amplitude", xinc=1, yinc=.1})
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From Figure 4-6 you see that the delay time (td) is about 0.5 seconds, 
the rise time (tr) is 0.8 seconds, the peak time (tp) is 1.6 seconds, the 
settling time (ts) is about 5.5 seconds, and the maximum overshoot (Mp) 
is about 24%.

Figure 4-6.  15-Second Step Response, Showing Performance Measures

You can compute these values from the 151-point step response data vector 
Y and substantiate your estimates.

First, you find the final value of the response:

Yf = makematrix(Y(151));

Get indices of all values > half the final value:

gt_half = find(Y > 0.5*Yf);

Time corresponding to first index in gt_half:

td = domain(Y(gt_half(1,1)))

td (a scalar) = 0.5

Get indices of all values > 0.1 * final value:

gt_1_10 = find(Y > 0.1*Yf);

Mp

tp

ts

tr

td
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Get indices of all values > 0.9 * final value:

gt_9_10 = find(Y > 0.9*Yf);

Subtract domain values to get time duration:

tr = domain(Y(gt_9_10(1,1)))-...

domain(Y(gt_1_10(1,1)))

tr (a scalar) = 0.8

Get peak value of response:

maxY = max(Y, {channels});

Index and time corresponding to peak value:

maxtp = find(Y == maxY);

tp = domain(Y(maxtp(1)))

tp (a scalar) = 1.6

Convert peak value to a percentage > 1:

Mp = round(10000*(maxY-1))/100

Mp (a scalar) = 23.21

Reformat the step response in reverse time:

Yrev = Y(151:-1:1);

Response values within 0.05 * final value:

gt_05 = find(Yrev <= 0.95*Yf | Yrev >= 1.05*Yf);

Time value of first point within bound:

ts = domain(Yrev(gt_05(1,1)))

ts (a scalar) = 5.1
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5
Classical Feedback Analysis

The open-loop systems analyzed in Chapter 4, System Analysis, generally 
perform in a satisfactory manner only if the system model is very accurate 
and there are no external disturbances. These conditions usually are not 
met. Feedback presents an effective way to control the output of a system. 
The functions in this chapter address the problem of suitably controlling 
an open-loop plant through output feedback. They are most often applied 
to single-input, single-output (SISO) systems. With the exception of 
rlocus( ) and bode( ), these functions also can be used with 
multi-input, multi-output (MIMO) systems.

Feedback Control of a Plant Model
The key principle of feedback is that the output of a system be fed back, 
compared to a reference or “desired” output value, and then the error 
between the two terms used to correct the system’s output so that it matches 
the reference. The basic diagram of a feedback control system is shown in 
Figure 5-1. 

Figure 5-1.  Feedback Control System Block Diagram

The output of the open-loop system is KH(s); the output of the closed-loop 
system shown in Figure 5-1 is given by:

U(s) Y(s)R(s)
K

+

–
H(s)

G(s)

Gcl(s)

Y s( )
R s( )
----------- KH s( )

1 KH s( )+
-------------------------=
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Because open-loop systems are generally easier to study and model than 
closed-loop systems, you want to design closed-loop systems based on 
information obtainable from the open-loop system. 

Root Locus
In Chapter 4, System Analysis, you learned how the location of the system 
poles and zeros affects the stability of the system, so an effective feedback 
control design should take into account the closed-loop pole and zero 
locations. If you represent the open-loop transfer function H(s) as the 
quotient of the numerator and denominator as follows:

you can rewrite the characteristic equation of the closed-loop system as 
follows:

This restates the fact that the open-loop system poles (which correspond 
to K = 0) are the roots of the transfer function denominator, D(s). As K 
becomes large, the roots of the previous characteristic equation approach 
the roots of N(s)—the zeros of the open-loop system—or infinity. For a 
closed-loop system with a nonzero, finite gain K, the solutions to the 
preceding equation are given by the values of s where both of the following 
are true:

The root locus is a plot in the real-imaginary axis showing the values 
of s that correspond to pole locations for all gains K, starting at K = 0 
(the open-loop poles) and ending at K = ∞. 

Root locus plots provide an important indication of what gain ranges can 
be used while keeping the closed-loop system stable. As discussed in the 
System Stability: Poles and Zeros section of Chapter 4, System Analysis, 
continuous-time systems are stable as long as their poles are in the left half 
of the s-plane (have a negative real part) and discrete-time systems are 
stable as long as their poles remain within the z-plane unit circle. 

The Xmath root locus-plotting utility exists for SISO systems only, though 
either state-space or transfer function models can be specified.

H s( ) N s( ) D s( )⁄=

1 KH s( )+ D s( ) KN s( )+ 0= =

KH s( ) 1= ∠ H s( ) 2k 1+( )π±= k 0 1 …, ,=( )
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rlocus( )
rlroots=rlocus(sys,K,{xmin,xmax,ymin,ymax,pattern,graph})

rlocus(sys,{xmin,xmax,ymin,ymax,pattern})# (interactive)

The rlocus( ) function computes and draws root locus diagrams for 
continuous-time and discrete-time SISO systems. The first syntax, in 
which a vector of gain values is specified, generates a plot showing the 
closed-loop pole locations for each gain. In the Graphics window, the 
complete locus is drawn as a solid line, with os marking the location of 
zeros and xs delineating open-loop pole locations. The second syntax 
brings up a window through which you can interactively modify the 
closed-loop gain and see the corresponding pole locations change on 
the locus. 

A grid showing pole stability range can be invoked with the pattern 
keyword. The optional keywords specifying maximum and minimum x and 
y values can be used to restrict the range of the selected s- or z-plane. These 
can be changed interactively if the interactive syntax is used. Click 
RECOMPUTE to activate rate changes.

Example 5-1 shows how to plot the rool locus created in Example 2-9, 
A Comparison of Several Discretization Methods.

Example 5-1 Plotting a Root Locus

H = system(0.5*polynomial([-0.36]), 

makepoly([1,2.79,2.74,1.11,0.16]));

You can create and graph a root locus, scaling the range of the 
real-imaginary plane as follows:

rlocus(H, {xmin=-2, xmax=0, ymax=0.5, ymin=-0.5})

These functions give the results shown in Figure 5-3. The large xs on the 
plot correspond to the open-loop pole locations you found for this system 
in Example 4-1, Using poles( ) with a System in Transfer Function Form, 
and the zeros correspond to the single zero at –0.36. 
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Figure 5-2.  Root Locus of H for Gain K = 0.07

This syntax allows you to vary the root locus gain through an interactive 
form. Within this form, you can change the gain value through either a 
slider or an editable label where value corresponds to the current slider 
position. The slider range is automatically updated when the slider is 
moved to its maximum or minimum value, or when a gain value outside 
the current slider limits is entered into the editable label. 
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As the gain varies, small ✱’s appear on the locus indicating the closed-loop 
pole location for that choice of gain. The locus shown in Figure 5-2 shows 
that for small gain values the closed-loop system is stable, with all of its 
roots in the left half of the complex plane.

Frequency Response and Dynamic Response
The frequency response of a dynamic system is the output, or response, of 
a system given unit-amplitude, zero-phase sinusoidal input. A sinusoidal 
input with unit amplitude and zero phase, and frequency ω produces the 
following sinusoidal output: 

where A is the magnitude of the response as a function of ω, and φ is the 
phase. The magnitude and phase of the system output will vary depending 
on the values of the system poles, zeros, and gain. In many practical 
engineering applications, the system poles and zeros are not precisely 
known. Because the frequency response can be determined experimentally, 
undesirable parts of the system’s frequency response then can be improved 
by adding known compensation to the system.

freq( )
H=freq(Sys,F,{Fmin,Fmax,npts,track,delta})

The freq( ) function calculates the frequency response of a system in 
several different ways, depending on the system representation. For 
continuous-time transfer functions, the frequency response H(ω) at a given 
frequency ω is obtained by substituting the complex frequency value jω for 
qin the following equation. For discrete-time transfer functions, the value 
ejwT, with T the system sampling interval, is substituted for q instead.

For continuous-time state-space systems, the basic method for finding 
frequency response is to substitute different frequency values, represented 
by ω, into the following equation:

H jω( ) A ω( )ejφ ω( )=

Sys q( )
q z1+( )… q zm+( )
q p1+( )… q pn+( )

---------------------------------------------=

H jw( ) C jwI A–( ) 1– B D+=
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For discrete-time state-space systems with a sampling interval of T, the 
frequency response for each frequency point ω is shown in the following 
equation:

Algorithm
The algorithm, based on [Lau86], uses a Hessenberg decomposition to 
simplify the previous equations and is quite robust. It finds matrices P and 
H such that A = PHP', where PP' = P'P = I and H is a Hessenberg matrix, 
and substitutes for A. Because H is zero only below the first subdiagonal, 
the number of operations needed to evaluate the response expression is 
proportional to the square of the size of A. 

freq( ) allows you to prespecify frequency ranges of interest, or it can 
generate a representative frequency range from minimum and maximum 
frequencies you specify. It then evaluates the complex frequency response 
over those frequencies, using specialized algorithms to do this efficiently. 

You can specify either a complete set of frequency points (the optional 
input F) or a range of frequency points (the keyword pair Fmin and Fmax) 
at which to evaluate the response. The track keyword indicates that phase 
tracking will be used to determine the values of the frequencies between 
Fmin and Fmax. The number of intermediate frequency points produced 
using track varies depending on the system and the Fmin and Fmax you 
choose. Alternately, you can use the npts keyword to specify the exact 
number of logarithmically-spaced frequency points you want computed. 
Specifying track invokes an algorithm which tracks the phase of the 
frequency response to make sure that all peaks and valleys are included in 
the computed response. The delta keyword indicates the amount of phase 
change (measured in degrees) to which the response evaluation should be 
sensitive. If phase change between two adjacent frequency points exceeds 
this delta, closer frequencies are used until either the phase change is less 
than delta or a maximum number of iterations is reached. Evaluation is 
forced at key frequency points which include the poles and the points lying 
halfway between adjacent poles. 

freq( ) returns a PDM having the frequency range as its domain. The 
dependent matrices of the frequency response PDM have as many rows as 
the system has outputs, and as many columns as the system has inputs. For 
MIMO systems, the (i, j) element of a dependent matrix is thus interpreted 
as the frequency response from input j to output i. This frequency response 
forms the core of the classical control design tools discussed in this chapter. 

H jw( ) C ejwTI A–( )
1–
B D+=
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For an example of frequency response of a simple system, refer to 
Example 5-2.

Given the single-input, single-output open-loop plant in Figure 5-3, where 
U(s) and Y(s) are the frequency domain input and output, respectively, you 
can examine its response characteristics and see how you can improve them 
using the frequency-response based control design functions in this chapter.

Figure 5-3.  Representation of the Open-Loop System

Example 5-2 Frequency Response of a Simple System

You can create the system directly in transfer function form:

sys = system(polynomial(-0.5), 

polynomial([0,0,-2,-10]));

and then obtain the frequency response directly:

H = freq(sys,{Fmin = 0.01,Fmax = 10,npts = 150});

freq( ) also can be called with a predefined vector of frequency points, 
or you can specify that phase tracking be used to compute frequency points 
between the minimum and maximum frequencies. The number of 
frequency points used with tracking will vary. To illustrate:

H = freq(sys,{Fmin=0.01,Fmax=10,track,delta=.5});

size(H)

ans (a row vector) = 1 1 335

The dynamics of this system are adequately reflected in both frequency 
responses. However, systems having more closely-placed pole and zero 
locations are good candidates to use with the track keyword.

Bode Frequency Analysis
While freq( ) provides you directly with the frequency response, other 
tools in the Control Design module can give you more insight into what the 
open- and closed-loop frequency responses of a system imply about the 
system behavior. Bode plots of system frequency response are useful 

U(s) Y(s)(s + 0.5)

s2(s + 2)(s + 10)
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because they can be used to assess the relative stability of a closed-loop 
system given the frequency response of the open-loop system. It should be 
noted that the open-loop system should be stable and minimum phase, 
having no right-half plane poles or zeros, for this type of analysis [Oga70]. 

The following complex frequency response:

can be separated into two parts, which are both functions of the frequency:

• ω: the magnitude, A(ω)

• the phase, φ 

The magnitude can be obtained as the absolute value of the response, 
whereas the phase is obtained from the four-quadrant arctangent of the 
response. 

The standard Bode format comprises two subplots:

• The upper plot shows the decibel gain (the common logarithm of 
the magnitude, multiplied by 20) plotted against the logarithm of the 
frequency. Logarithmic (decibel) plots are a particularly useful tool 
for indicating magnitude response because the multiplication of 
magnitudes is shown as the sum of their logarithms, thus allowing 
you to determine the system response with varying gains quickly.

• The lower plot shows the phase, in degrees, as a function of the 
logarithm of the frequency. For both the gain and phase plots, 
logarithmic frequency scaling is used because it allows a wide range 
of frequency-dependent behavior to be displayed simultaneously.

Because the gain and phase plots are additive for systems cascaded in 
series, Bode plots of an open-loop plant and potential compensators can be 
added to determine the frequency-response characteristics of the complete 
system. The plots also illustrate system bandwidth, as the frequency at 
which the output magnitude is reduced by three decibels, or attenuated to 
approximately 70.7% (a factor of  of its original value. 

Bode plots also provide an important aid to evaluate how stable—or, 
more specifically, how close to instability—a closed-loop system is. As 
discussed in the System Stability: Poles and Zeros section of Chapter 4, 
System Analysis, for the continuous case, the closed-loop poles of a stable 
system lie in the left half of the complex plane. 

H ω( ) A ω( )ejφ ω( )=

2 2⁄( )
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Referring to the entire closed-loop system in Figure 5-1 as Gcl, the poles of 
Gcl are the roots of its denominator—that is, the values of s such that either 
of the following is true:

The magnitude (absolute value) of G(s) is 1 at each pole of Gcl(s), and the 
phase (given by the four-quadrant arctangent) of G(s) is –180° at each pole 
of Gcl(s). For any neutrally stable system, the frequency response 
magnitude will be equal to 1 (or 0 dB) and the phase will be –180° at the 
frequency at which the closed-loop roots fall on the imaginary axis. 

This analysis is often applied to systems where G(s) consists of a gain, K, 
and a dynamic model, H(s), in series (as shown in Figure 5-1). For cases 
in which increasing the gain leads to system instability, the system will be 
stable for a given value of K if the magnitude of KH(s) is less than 1 at any 
frequency at which the phase of KH(s) is 180° [FPE87]. You can measure 
how close a system is to instability by examining the value of the magnitude 
and phase at these critical values. These measures are termed the gain 
margin and the phase margin. These are important because real-life models 
are prone to uncertainties and changes in gain or phase. Typically, systems 
become unstable with gains that are too high or have too much phase lag. 
Refer to Example 5-4.

The gain margin indicates by how much the gain can be raised before the 
closed-loop system becomes unstable. This critical gain value at which 
instability results can be thought of in several ways. As described 
previously, this gain value results in the closed-loop poles of the system 
being located on the imaginary axis. In terms of the Nyquist stability 
criterion, discussed in more detail under nyquist( ), this is the gain value 
at which the Nyquist plot crosses the negative real axis, where the phase is 
–180 degrees. The gain margin itself is the reciprocal of this value, 
expressed in decibels. 

The Bode plot provides a clear visual interpretation of the gain margin as 
the number of decibels by which the gain exceeds zero when the phase 
equals –180 degrees. The phase margin is the difference between the phase 
at the point where the response crosses the unit circle (has unit magnitude, 
or a gain of 0 decibels) and –180 degrees. These margins provide a measure 
of how near the closed-loop system roots are to instability. Depending on 
the complexity of the system, there may be multiple gain and/or phase 
margins. 

1 G s( ) 0=+

G s( ) 1–=
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Referring to Figure 5-4, notice the additional lines drawn on the plots at 
the frequencies where the gain crosses the 0 dB line and where the phase 
crosses the 180° line. When the gain crosses the 0 dB line, the phase is 
about –168°, 12° away from –180°. So the phase margin is approximately 
12°. Similarly, when the phase crosses the –180° line, the gain is about 
–44 dB (44 dB from the 0 dB line), and thus the gain margin is 44 dB.

bode( )
[H,dB,Phase] = bode(Sys,{F,keywords})

The bode( ) function uses freq( ) to compute the frequency response 
of a system. By default, the freq( ) keyword track is on, but it can be 
overridden. Refer to the freq( ) section for more details. When the 
frequency response H is found the decibel magnitude and the phase angle 
in degrees are computed as follows:

dB=20*log10(abs(H); phase=(180/pi)*atan(H)

bode( ) then produces the standard Bode format plots showing response 
magnitude and phase as functions of frequency. Unlike freq( ), bode( ) 
does not require a frequency range or a pair of maximum and minimum 
frequencies; if no range is specified, it uses deffreqrange( ) to 
calculate a default frequency range.

bode( ) often generates more than one set of plots. For MIMO systems, a 
plot is made for each output with multiple curves, one per input. If there are 
multiple outputs, a menu will appear which allows you to select an input to 
view. 

If you want to see the response of the system from Example 5-2 to input 
frequencies ranging from 0.01 Hz to 10 Hz, you can analyze a frequency 
response using bode( ), as shown in Example 5-3.

Example 5-3 Analyzing a Frequency Response Using bode( )

sys = polynomial(-0.5)/polynomial([0,0,-2,-10]);

[H,dB,phase]=bode(sys,

{Fmin = 0.01,Fmax=10,npts = 300,!wrap})

You obtain the gain and phase plots as shown in Figure 5-4.
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Figure 5-4.  Bode Plot Showing System Gain and Phase Margins

These plots illustrate how the location of the system poles and zeros shapes 
the gain and phase curves. Each pole contributes a factor of –20 dB per 
decade (frequency interval from ω to 2ω). The two poles at zero cause the 
magnitude response of the system to start with a slope of –40 dB/decade. 
The zero at 0.5 radians/sec (about 0.08 Hz) contributes a factor of 
approximately 20 dB. These gain magnitude factors add, so the slope of the 
gain plot changes from –40 dB/decade to about –20 dB/decade until you 
begin to see the influence of the poles at 2 radians/sec. (0.318 Hz) and 
10 radians/sec (1.59 Hz), each of which contribute another –20 dB/decade 
to the slope of the magnitude plot.

The phase is a function only of the pole and zero locations. Notice that in 
creating the phase plot with bode( ), you specified the !wrap keyword. 
This created a phase plot where range goes down to the full angle value of 
the phase, rather than wrapping the phase between +180°. Each pole at zero 
contributes –90° of phase. 

The remaining poles are called first-order poles because they are of the 
following form:

gain margin

phase margin

s pn+
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Each of these contributes a phase angle φ defined by:

with ω and pn expressed in the same units, either radians per second or Hz, 
and using a four-quadrant arctangent function similar to that provided by 
atan2( ) in Xmath. Thus the amount of phase contributed by a first order 
pole at the frequency

(generally termed the corner frequency, because the asymptotes used to 
draw different portions of the response intersect and form a corner) is –45°. 
At frequencies beyond the corner frequency, the phase angle contributed by 
that pole comes closer and closer to –90°. First-order zeros contribute phase 
angle in the same manner except that the sign of the angle is positive. 

margin( )
[gnMargin,phMargin,dPdF,dGdF] = margin(H)

The margin( ) function is a useful tool for evaluating the stability margin 
of a given system based on its frequency response. It returns PDMs 
indicating the gain margin and the phase margin, as well as the rate of 
change of gain and phase.

margin( ) is defined for SISO systems only. It takes as input either a 
single PDM representing frequency response or a pair of PDMs containing 
gain information in decibels and phase information in degrees. In either 
case, the domain of the input is the set of frequency points, ω. 

Within margin( ), as within bode( ), the frequency response is 
converted to decibel magnitude and degree phase. All angles are converted 
to four-quadrant angles between 0° and 360°. Use the following notation 
for each point i in the frequency range:

φ ω pn⁄( )atan=

ω pn=

Δx x i 1+( ) x i( )–=
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margin( ) loops over all the frequency points in the response and 
performs the following computation for phase and gain margins at each, 
denoting gain margin as Mg and phase margin as Mp:

This loop finds all the frequency intervals within the response which 
contain –180° phase crossings and 0 decibel gain crossings. margin( ) 
then interpolates to find more exact frequency values for the crossings. 
A gain margin value is returned for every pair of phases between which 
a –180° phase value must occur, and a phase margin is returned for each 
pair of gains between which a zero-decibel gain value must occur.

margin( ) also computes the frequency-rate of change for both the phase 
and the gain of the response.

–180° and 0 dB crossings are difficult to detect accurately if the points in 
the frequency response are too widely spaced.

You can examine the gain and phase margins of your open-loop system 
quickly using margin( ), without having to draw the bode gain and phase 
response plots first. Input to margin is the frequency response H of the 
system. Referring to the system defined in Example 5-3, you can see that 
you already have H as the output from bode( ), but you can calculate it 
explicitly using freq( ) as shown in Example 5-4.

Example 5-4 Obtaining Gain and Phase Margin Using margin( )

H = freq(sys,{Fmin=0.01,Fmax=10,npts=300});

[Gm,Pm] = margin(H)

Gm (a pdm) =

- domain | 

----------+----------

0.595514 | 44.5062

Pm (a pdm) =

domain | 

----------+----------

0.0257558 | 12.3814

Mp i( ) phase i( ) Δphase
Δω

------------------- Δω gain i 1+( ) Δω
Δgain
---------------–⎝ ⎠

⎛ ⎞+=

Mg i( ) gain i( ) Δgain+( )
Δphase

--------------------------------------------- Δω phase i 1+( ) Δω
Δphase
-------------------–⎝ ⎠

⎛ ⎞–=
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Note margin( ) also returns the frequencies at which the phase crosses the –180° line 
and the gain crosses the 0 dB line. These results match the gain and phase margins shown 
graphically in Figure 5-4.

nichols( )
[H,dB,Phase] = nichols(Sys,{F,keywords})

The nichols( ) function is another useful frequency domain tool for 
examining system performance in dynamic systems. The open-loop 
frequency response is calculated and plotted against the gain in the standard 
Nichols format (gain in decibels versus phase in degrees). Different points 
on the plot thus correspond to different values of ω. 

nichols( ) plots are particularly useful as a means of obtaining the 
closed-loop frequency response of a system from the open-loop response. 
Nichols plots are frequently augmented with curves, or loci, of constant 
magnitude or phase. These curves are drawn when the pattern keyword 
is specified. Notice that each point on the open-loop response curve 
corresponds to the response of the system at a given frequency, and the 
closed-loop magnitude response at that frequency can be read off the 
Nichols plot by noting the value of the magnitude locus which the point on 
the curve intersects. The closed-loop phase can be determined in a similar 
manner by noting the phase locus which the open-loop curve crosses. 
[Oga70]

nichols( ) is implemented in a manner very similar to that used for 
bode( ). It generates a frequency range if none is explicitly entered, 
calls freq( ) internally, and converts the complex frequency response 
to magnitude gain in decibels and phase in degrees. bode( ) and 
nichols( ) differ only in the plots they produce. For MIMO systems, 
nichols( ) will produce plots with as many curves as there are system 
inputs. A menu presents a selection of output responses. To generate a 
Nichols plot, use the syntax shown in Example 5-5.

Example 5-5 nichols( ) Plot

A = [2, 0, -0.01; 2,-2,0; -1.4, 3, 0];

B = [3; 5; -1];

C = [1, 0, 4];

nsys = system(A,B,C,1);

H=nichols(nsys,

{Fmin=.01,Fmax=5,npts=300, pattern,!wrap})
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The result is shown in Figure 5-5.

Figure 5-5.  nichols( ) Gain-Phase Plot

Nyquist Stability Analysis
Nyquist analysis is a frequency domain method for examining system 
performance of dynamic systems. Nyquist plots typically consist of the real 
part of the frequency response plotted against the imaginary part of the 
response. Nyquist plots are particularly useful in that they indicate the 
stability of a closed-loop system, given an open-loop system which 
includes a gain, K (it may be unity). 

Nyquist’s stability criterion derives from Cauchy’s principle, which states 
that a contour integral of a complex function will evaluate to zero as long 
as the contour does not contain a singularity of that function [ChB84]. The 
frequency response is the complex function in this case, and the contour 
over which it is evaluated and plotted is determined by the frequency range 
of the response. 

Nyquist’s stability criterion states that the number of clockwise 
encirclements of the –1 point on the real axis by the plot is equal to the 
number of unstable closed-loop poles minus the number of unstable 
open-loop poles. This criterion can be used to determine how many 
encirclements are required for closed-loop stability. For example, if the 
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plant is open-loop stable, then there should be no encirclements. 
If the plant has one open-loop unstable pole, there should be one negative 
(counter-clockwise) encirclement.

The stability criterion is most easily derived from the SISO 
transfer-function representation of a system. The Nyquist plot for a MIMO 
system consists of a set of plots, one for each output, each containing as 
many input frequency response curves as there are system inputs. You can 
derive any plot from a context menu. If you close a feedback loop around a 
SISO system in transfer function format, you obtain a closed-loop system 
as shown in Figure 5-6.

Figure 5-6.  Closed-Loop System Containing a Variable Gain K

You obtain the following closed-loop transfer function from Y(s) to U(s):

Thus, the closed-loop roots are the roots of the equation 1 + KH(s) = 0. 
The complex frequency response of KH(s), evaluated for s = jω in 
continuous time and ejωT for discrete systems, will encircle (–1,0) in the 
complex plane if 1 + KH(s) encircles (0,0). If you are examining the 
Nyquist plot of H(s), you will notice that an encirclement of (–1/K,0) by 
H(s) is the same as an encirclement of (–1,0) by KH(s). This fact allows you 
to use one Nyquist plot to determine the stability of a system for any and 
all values of K.

nyquist( )
H = nyquist(Sys,{F,keywords})

The nyquist( ) function is structured very similarly to bode( ) and 
nichols( ) in that it is largely a wrapper on the freq( ) function to 
obtain the system’s frequency response. The output H is just the output from 
the call to freq( ). The main difference from the other two functions is 
that nyquist( ) does not calculate the decibel gain and the phase of the 
system’s response. It generates the Nyquist plot by plotting the real part of 
each point of the response against the imaginary part.

U(s) Y(s)
K

+

–
H(s) = 

num(s)

den(s)

Y s( )
U s( )
----------- KH s( )

1 KH s( )+
-------------------------=
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The Nyquist plot Xmath generates is complete only for the frequencies you 
specify. Ideally you would obtain a plot based on the frequency response 
from ω = 0 to ω = ∞. However, a good choice of frequency range usually 
comes close enough. When you have obtained the Nyquist plot from 
approximately w = 0 to ∞, you can reflect it about the real axis to get a 
complete plot of the open-loop frequency response from –∞ to +∞. Extend 
the resulting curve, traveling clockwise, until the contour is closed. Refer 
the augmented plots in Example 5-6. When you have done this, you can use 
the expression Z = N + P to find the number of unstable closed-loop system 
roots, Z, given the number of clockwise encirclements of the (–1/K,0) or 
(–1,0) point and the number of unstable (right-half plane) poles of the 
open-loop system.

For an example of how to use Nyquist plots to determine stable gains for 
the closed-loop system, refer to Example 5-6.

Example 5-6 Using Nyquist Plots to Determine Stable Gains for the Closed-Loop System

By examining the Nyquist plot for your open-loop system

you can tell for what multiplicative gain values K the closed-loop system 
will be unstable.

H = nyquist(sys,{Fmin=0.01,Fmax=10,npts=300});

gives you an overview of the Nyquist plot for a broad range of frequencies, 
but the plot gives more information than you need about the low frequency 
response and not enough about the response at higher frequencies. Refer to 
Figure 5-7.

You do another Nyquist plot, this time examining the high-frequency 
response more closely. Refer to Figure 5-8.

H2= nyquist(sys,{Fmin=.5,Fmax=5,npts = 150})

G s( ) s 0.5+( )
s2 s 2+( ) s 10+( )
-----------------------------------------=
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Figure 5-7.  Nyquist Plot of the Open-Loop System for Frequencies 
from 0.01 Hz to 10 Hz

Figure 5-8.  Nyquist Plot of the Open-Loop System for Frequencies 
from 0.5 Hz to 5 Hz
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By combining the information from the two plots, reflecting them across 
the real axis to account for the negative frequency response and augmenting 
them with a line closing the contour in the clockwise direction, you obtain 
the sketch of the encirclement pattern shown in Figure 5-9. In this figure, 
Nyquist contour is formed by drawing the system’s Nyquist plot for all 
positive frequencies, reflecting it about the real axis to show plot for 
negative frequencies, and completing the closed contour in a clockwise 
direction.

Figure 5-9.  Nyquist Contour Formed by Drawing the System’s Nyquist Plot 
for All Positive Frequencies

Because your open-loop system has no unstable (right-half plane) poles, 
the number of unstable closed-loop poles for a given gain K will be equal 
to the number of times the contour encircles the (–1/K, 0) point. 

Referring back to the Nyquist plots, you see that for K > 168 
(or –1/K > –0.006), you have two encirclements of the (–1/K, 0) point, 
and thus two unstable closed-loop poles. For gain values less than 167, 
the closed-loop system is stable. You can verify this with a small 
experiment, using a value of 169 for K:

sysu = 169*sys;

sysucl = feedback(sysu);

poles(sysucl)

ans (a column vector) =

Imaginary

Real
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-0.52263 

0.00336213 + 3.75217 j

0.00336213 - 3.75217 j

-11.4841 

Two of the poles of the closed-loop system are now unstable.

Linear Systems and Power Spectral Density
A key characteristic of the linear, time-invariant systems represented in 
Xmath is that the transfer function between a system input and a system 
output is just the Fourier transform of the response at that output to a delta 
impulse at that input. The power spectral density of a time series is defined 
as the Fourier transform of the autocorrelation function of the series. 

Given these two concepts, you can obtain the power spectral density of the 
output of a linear, time-invariant system just by knowing the power spectral 
density of the input and the system’s transfer function [Leo89], [GrD86]. 
Representing the transfer function by H(q) and the power spectral densities 
of the input and output as SU(q) and SY(q), respectively:

You also can obtain the cross-power spectral densities:

These results indicate that you can shape the spectrum of a linear system’s 
output by using an input with an appropriate spectrum. Alternatively, you 
can choose a system to give you the output spectrum you want, given a 
fixed set of input data. When you use linear systems in transfer-function 
form for such applications, you generally refer to them as filters rather than 
systems.

psd( )
[Ypsd,Yspec] = psd(Sys,{Uspec})

The psd( ) function computes the power spectral density and 
cross-spectral density of a system’s outputs as a function of frequency, 
given the frequency-dependent input power spectral density matrices. The 
input parameter Uspec is a PDM where domain contains the frequency 

SY q( ) H q( ) 2SU q( )=

SYU q( ) H q( )SU q( )=

SUY q( ) H∗ q( )SU q( )=
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values at which the power spectral density is to be computed and where 
dependent matrices are the input power spectral density matrix at each 
frequency. psd( ) computes a cross power spectral density matrix for each 
of a user–specified set of frequency values ω, returning them together in the 
PDM Yspec:

psd( ) calls freq( ) internally to compute the frequency response, H, of 
the system. It uses the frequency range specified by the domain of Uspec. 

The power spectral density of the output as a function of frequency, given in 
Ypsd, is obtained from the real parts of the diagonal terms of the dependent 
matrices in Yspec.

Some background information on power spectral density may be useful. 
Given a time-domain input series U(t), the power spectral density of U(t) 
is the Fourier transform of the autocorrelation of U(t). For a system with 
q inputs each input spectral density dependent matrix within Uspec is a 
square Hermitian matrix of size q. A Hermitian matrix is a square matrix 
equal to its complex conjugate transpose. If Uspec is constant for all 
frequencies (when the spectrum is white) then Uspec can be specified as 
a single matrix.

If you are working with multiple systems which have been cascaded in 
series, the output power spectral density of the first system can be used 
as the input power density to the second system in a subsequent use of 
psd( ).

For an example of how to verify the response of a system to white noise 
input, refer to Example 5-7.

Example 5-7 Verifying the Response of a System to White Noise Input

You can easily generate the power spectral density of an input white noise 
process.

sys = polynomial(-0.5)/polynomial([0,0,-2,-10]);

w = logspace(0.01,1,50);

Uspec = pdm(ones(w),w);

You then use psd( ) to obtain the output power spectral density and the 
cross-spectral density as a function of frequency.

[Ypsd,Yspec] = psd(sys,Uspec);

Yspec H jw( )× Uspecjw× H jw–( )×=
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6
State-Space Design

The functions in this chapter are generally termed “modern control” tools. 
They are based on the state-space linear system representation, and employ 
methods which are generally applicable to both SISO and MIMO 
problems. For a review of the state-space system representation, refer to 
the State-Space System Models section of Chapter 2, Linear System 
Representation.

The process of state-space control system design comprises several distinct 
steps. First, you need to assess the controllability and observability of the 
system. The designs discussed in this chapter are based on systems that are 
both controllable and observable. When you have determined the 
controllability and observability of the system, you can design a feedback 
control law based on the set of state values. Next, you design an estimator 
that estimates the state variable values based on the measured output. 
Finally, you combine the controller and estimator to obtain a complete 
compensator for the system.

In designing optimal control systems, you pick a performance index you 
want to optimize for a given system. This performance index is a quadratic 
function reflecting the physical constraints of the system and the 
characteristics of any noise that may be present. When this performance 
index is a quadratic, you solve mathematically for the optimal control law 
and estimator as discussed in the Linear Quadratic Regulator section and 
the Linear Quadratic Estimator section.

This chapter concludes with a discussion of system balancing. The 
controllability and observability grammians provide a measure of how 
controllable and observable a system is. They also can be used to transform 
a system to its internally balanced form.

Controllability
Controllability is the property of being able to move the states of a system 
arbitrarily in a finite time, given some control input to the system. Although 
a particular physical system may be controllable by this definition, not all 
state-space models describing that system may be controllable. For 
example, if there exists a system eigenvector orthogonal to the input 
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matrix B, then the mode of the system associated with the corresponding 
eigenvalue cannot be controlled with any input. You can think of this in 
the SISO transfer function case as a cancellation between a numerator and 
denominator root—where you cannot control the system in the direction 
of that root (mode). 

It can be shown (refer to [Kai80]) that for a continuous-time system with 
the state update equation:

(6-1)

you can define the controllability matrix for both continuous and discrete 
systems as: 

(6-2)

For all modes of the system to be controllable, the controllability matrix C 
must contain a linearly independent column vectors for each system mode. 
Thus, with A an n × n matrix, C must have rank n for the system to be 
controllable.

In the context of gain-state feedback, a system’s controllability determines 
whether you may be able to change the effective dynamics of the system to 
ones that yield a more desirable response.

Using full-state feedback, as shown in Figure 6-1, so that u = v – Kx. 
Working through the system equations, you obtain

 (6-3)

for the new state-update equation. If the system is controllable, you can 
relocate the eigenvalues of the closed-loop system to any value by choosing 
the vector of state gains K appropriately. Conversely, the eigenvalues 
associated with uncontrollable modes remain unchanged, no matter what 
value you choose for K. 

x· Ax Bu+=

C B AB A2B…An 1– B[ ]=

x· A BK–( )x Bv+=
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Figure 6-1.  Full-State Feedback Being Used to Relocate the Eigenvalues 
of a Controllable System Based on the Value of the Gain K

controllable( )
[SysC,T,nuc]=controllable(Sys,{tol})

The question that naturally arises is, “How do you know which states are 
controllable in a given system?” The controllable( ) function returns 
the controllable partition of a state-space system, the number of 
uncontrollable states in the original system, and a linear transformation 
matrix which can be used to partition the states into controllable and 
uncontrollable sets. For an example of how this is done, refer to 
Example 6-1.

controllable( ) uses the staircase algorithm, which is discussed in 
more detail in the stair( ) section.

Example 6-1 Controllability of a System

Perform controllable( ) on a system is described by:

A = [1,0,0.01;0,1,0;0,0,1];

B = [1,0,0]'; C = [0.6,0.8,0];D = 0;

Sys = system(A,B,C,D);

[SysC,T,nuc] = controllable(Sys)

The system has 2 uncontrollable states 

SysC (a state space system) =

A

1

B

-1

C

-0.6

D

0

v u yx = Ax + Bu
y = Cx + Du

K

+

–



Chapter 6 State-Space Design

Xmath Control Design Module 6-4 ni.com

X0

0

Input Names

-----------

Input 1 

Output Names

------------

Output 1

System is continuous

T (a square matrix) =

2.22045e-16 0 -1 

0 1 0 

-1 0 2.22045e-16

nuc (a scalar) = 2

These results indicate that only the first state of the system corresponds to 
a controllable mode, and the remaining two are uncontrollable.

Similarly, if you form the controllability matrix for this system,

[,states] = size(A);

Con = B;

For i = 1:states-1;

Con = [B, A*Con];

endFor

det(Con)

ans (a scalar) = 0

you see that the controllability matrix is singular (its determinant is zero), 
confirming the results from controllable( ). 

Observability and Estimation
As described in the Controllability section, the term controllability 
describes whether or not a system’s states can be affected, and the system 
eigenvalues relocated, by changes to the system input. The analogous 
concept of observability describes whether it is possible to determine the 
value of an individual state at a particular time by observing the system 
outputs for a finite amount of time. In essence, an observable system is one 
for which you can “observe” state values by knowing the output of the 
system. 
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Beginning with the basic state-space equations (the Du output term can be 
omitted without loss of generality):

you can obtain expressions for the successive derivatives of the output term, 
thus forming a complete description of the initial condition on the output:

Generally, you term the following matrix

the observability matrix. If the rank of O is equal to n (where A is an n × n 
matrix), you can always find a state vector which will realize the initial 
conditions you want on the output, presuming that you know the initial 
conditions on the input. If, however, the observability matrix loses rank 
(is singular, in the SISO case), you will not be able to find states that give 
you particular output conditions if those conditions lie in the null space of 
the observability matrix. 

The observability of a system is of particular importance when you want 
to determine the actual values of the states based on our knowledge of the 
system dynamics and the input and output values at a given time. If a system 
is observable, you can create an observer, or estimator, to “guess” the 
values of the states and use the information available to zero the state 
estimate error as quickly and accurately as possible.

Referring to Figure 6-2 and tracing through the system equations, you can 
obtain the time-update equation for the state estimate error  
Figure 6-2 is a general observer block diagram where the output estimate 
error is defined as 

x· Ax Bu+=
y Cx=

y
y·

y··

C
CA

CA2
x

0 0 0
CB 0 0
CAB CB 0

u
u·

u··
+=

O

C
CA

CA2

…

CAn 1–

=

...

x̃ x x̂.–=

ỹ ỹ y ŷ.–=
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Figure 6-2.  General Observer Block Diagram

If the observability matrix is nonsingular, you will be able to put the 
eigenvalues (pole locations) of (A – LC), shown in Equation 6-4, anywhere 
you want. Thus, you can choose them to make  decay to zero as quickly 
as possible. 

(6-4)

The problem of finding the eigenvalues of (A – LC) can be equivalently 
posed as that of finding the eigenvalues of (A' – C 'L'). This statement can 
be recognized as equivalent to that of the pole-placement problem for a 
state-feedback controller (refer to the new state-update equation in the 
Controllability section), with A, B, and K replaced by A', C ', and L', 
respectively. Notice that these two representations correspond to a 
state-space system and its transpose. This illustrates the principle of duality 
between the controller and estimator forms. For more information, refer to 
the Duality and Pole Placement section.

observable( )
[SysO,T,nuo] = observable(Sys,{tol})

The observable( ) function is the analogue to controllable( ). 
As described in the Controllability section, if a system {A,B,C,D} is 
controllable, its transpose {A',C',B',D'} is observable. observable( ) 
returns the observable partition of a state-space system, the number of 
unobservable states in the original system, and a linear transformation 
matrix which can be used to partition the states into observable and 
unobservable sets. For an example of how to use the observable( ) 
function, refer to Example 6-2.

observable( ) uses the staircase algorithm, which is described in more 
detail in the stair( ) section.

u y
Cx

+
–

x = Ax + Bu
x

y

y

Cx

L

x
x = A + Bu + Ly

x̃

x̃
·

A LC–( )x̃=
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Example 6-2 Observability of a System

A system is described by:

A = [1,0,0.01;0,1,0;0,0,1];

B = [1,0,0]';C = [0.6,0.8,0];D = 0;

Sys = system(A,B,C,D);

Performing,

[SysO,T,nuo] = observable(Sys);

The system has 1 unobservable state 

This example indicates that one state of the system’s states corresponds to 
an unobservable mode, but that the other two are observable.

Similarly, if you form the observability matrix for this system,

[,states] = size(A);

Obs = C;

For i = 1:states-1;

Obs = [C; Obs*A];

endFor

det(Obs)

ans (a scalar) = 0

you see that the observability matrix is singular (its determinant is zero), 
confirming the results you saw from observable( ). 

Minimal Realizations
All state-space systems have an infinite number of realizations. All systems 
have a minimum number of states needed to express the system dynamics, 
but can be described using any number of states greater than or equal to this 
minimum number. If a system has more states than are needed to express a 
given transfer function, it will have unobservable and/or uncontrollable 
modes corresponding to eigenvalues of the A matrix that are not poles of 
the transfer function. 

All minimal realizations of the same system are related by a coordinate 
transformation. 



Chapter 6 State-Space Design

Xmath Control Design Module 6-8 ni.com

minimal( )
[SysM,T,nuco] = minimal(Sys,{tol})

Because nonminimal systems are uncontrollable, unobservable, or both, 
you want to be able to compute the minimal realization for a given system. 
This comprises the controllable and observable parts of the dynamic 
system. The minimal( ) function calls both the controllable( ) and 
observable( ) functions, then extracts the part of the original system 
that is both controllable and observable. 

minimal( ) is implemented directly as a wrapper on controllable( ) 
and observable( ). The controllable subsystem is extracted first, then 
the observable part of the subsystem is returned. For an example of how to 
find a minimal realization for a system with uncontrollable or unobservable 
parts, refer to Example 6-3.

Example 6-3 Finding a Minimal Realization for a System

A system is described by:

A = [1,0,0.01;0,1,0;0,0,1];

B = [1,0,0]';

C = [0.6,0.8,0];

D = 0;

Sys = system(A,B,C,D);

Notice that the system has a number of zero-pole pairs which cancel each 
other out:

poles(Sys)

ans (a column vector) =

1

1

1

zeros(Sys)

ans (a column vector) =

1

1

To find the minimal part of the system:

SysM = minimal(Sys);

The system has 2 uncontrollable states

poles(SysM)
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ans (a scalar) = 1

zeros(SysM)

ans is null

stair( )
[SysT,T,nc] = stair(Sys,tol)

The stair( ) converts a dynamic system to staircase form. In the 
staircase form, the A and B system matrices are linearly transformed so that 
they are partitioned into controllable and uncontrollable parts. By duality, 
converting the transpose of a system into staircase form results in its being 
separated into observable and unobservable parts. The matrices are 
partitioned as shown in the following example:

where Ac is controllable, Auc is uncontrollable, and Acuc represents the 
coupling from the uncontrollable states to the controllable part of the 
representation. There is no coupling from the controllable states to the 
uncontrollable ones. 

T is a transformation matrix between the original system, Sys, and the 
system in staircase form, SysT. 

The transformations are as follows:

The optional tolerance, tol, indicates the threshold value beneath which 
numbers in the transformed matrices should be rounded to zero.

The staircase algorithm used to partition the system derives from the 
Van Dooren algorithms. For further details, refer to [Van79], [Van81], 
and [BeV88].

Astair
Auc 0
Acuc Ac

Bstair
0
Bc

= =

Astair T 1– AT=

Bstair T 1– B=

Cstair CT=
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Duality and Pole Placement
The new state-update equation in the Controllability section and the 
Observability and Estimation section, the time-update equation in the 
Observability and Estimation section, along with the corresponding block 
diagrams in Figures 6-1 and 6-2, indicate how you can move the 
eigenvalues, or poles, of a minimal system through the choice of a feedback 
gain K (or L). Given the system’s state-space representation and any 
desired set of closed-loop poles, you can solve an eigenvalue problem to 
find the gain that yields these poles for the complete system. Although the 
poles of a minimal system can be moved to any value, this approach does 
not guarantee that the resulting gain is small or physically practical—just 
that it is finite. 

The similarity between the new state-update equation (Equation 6-1) 
and the time-update equation (Equation 6-4) for controller and observer 
feedback brings up the principle of duality with respect to the 
controllability and observability of a system. Briefly, for a given state-space 
system Sys1 with system matrices {A,B,C,D}, there exists a dual system 
Sys2 described by {A*,C*,B*,D}, using * to denote a complex conjugate 
transpose. If Sys1 is controllable, Sys2 will be observable, and vice versa. 
This can be quickly verified by constructing the controllability and 
observability matrices for both. Thus, the gain value that yields a set of 
desired closed-loop poles for feedback control of a system also yields an 
observer with the same pole locations for the system’s dual. 

poleplace( )
K = poleplace(A,B,poles)

The poleplace( ) function solves the problem 
eig(A – B * K) = poles for single-input systems. This is essentially 
the problem posed in Figure 6-1 and the new state-update equation in the 
Controllability section. If you know where you want the system poles to 
be located, poleplace( ) returns the value of the gain vector K that will 
move the closed-loop poles to the desired locations.

The syntax poleplace(A',C',poles) can be used for regulator 
problems, or by duality, for estimator problems. In general, the system 
{A,B} must be reachable (all unstable poles controllable) for controller 
design and the system {A',C'} must be stabilizable (all unstable poles 
observable) for estimator design. The current poleplace( ) 
implementation is limited to single-input systems.
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poleplace( ) is unusual among Xmath’s modern control design 
functions in that only the A and B matrix variables are used as input, 
rather than a complete system variable. This is done because the other 
state-space matrices are not needed in the computation, and in many cases 
it is desirable to change or perturb the elements of the A and B matrices 
slightly to simulate actual conditions, without having to reformat the entire 
system. For an example of an arbitrary pole placement for a controllable 
system, refer to Example 6-4.

Example 6-4 Arbitrary Pole Placement for a Controllable System

A = [0,1,0,0;21,0,0,0.8;0,0,0,1;0,0,0,-4];

B = [0,-2,0,1]';

C = eye(4,4);

D = zeros(4,1);

ipsys = system(A,B,C,D);

If you want to place the system poles in a Butterworth pattern:

Kc = poleplace(A,B,[-5+8.66*jay, -8.66+5*jay]);

You then can use this new gain vector as a feedback gain to create a new 
system,

ipsysfb = feedback(ipsys, system([],[],[],Kc));

and verify that the poles of this new system are at the designated locations:

poles(ipsysfb)

ans (a column vector) =

-8.66 + 5 j

-8.66 - 5 j

-5 + 8.66 j

-5 - 8.66 j

You need specify only one complex pole in a conjugate pair of desired pole 
locations. poleplace( ) checks for conjugate pairs and adds conjugates 
as necessary to the input poles( ) vector. 

Then the system matrix S is created:

r is a random row vector with as many rows as A has columns. You then 
create a random complex row vector with as many elements and conjugate 

S A B
r 0

=
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pairs as poles( ). For each pole value in poles( ), poleplace( ) 
forms a vector by subtracting the pole’s value from each diagonal element 
of S except for the last element (0). The resulting matrix is then divided by 
the corresponding value in the random complex vector. The complex value 
is padded with zeros to form a vector that is row compatible with the 
matrix. poleplace( ) then divides the last element of this quotient vector 
by the negative of the first element of the quotient vector, and the result is 
the gain required to move that pole value. This sequence of steps is 
performed as a matrix operation so that the complete gain vector is 
computed immediately. rcond( ) is called to examine the condition of the 
matrix formed by all the quotient vectors. If the condition number returned 
is less than eps × (the row size of A), poleplace( ) displays a warning 
message indicating that the eigenvectors of the closed-loop system are 
ill-conditioned.

Linear Quadratic Regulator
A regulator is a feedback controller designed to drive the states of a 
controllable system using acceptable amounts of control and keeping the 
states within acceptable levels (where the designer can mathematically 
define what constitutes “acceptable” in both cases). Figure 6-3 shows a 
continuous-time regulator where the design presumes availability of all 
states, feeding them back through the optimal gain array Kr to drive the 
system so that the states return to zero as quickly as possible in the presence 
of a disturbance or noise, represented by ω. 

Figure 6-3.  Continuous-Time Regulator

In designing a regulator, the goal is to find a controller that minimizes the 
effects of disturbances on the states of the system. Xmath’s linear quadratic 
regulator function, regulator( ), uses a quadratic performance index to 
establish the trade-off between the permissible state fluctuation and the 
available energy, or amount of control, required to move the states. 

Note In designing a regulator, assume that all the states of the system are available as 
outputs.

u x
–Kr x = Ax + Bu
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For continuous-time systems,

the quadratic performance index takes the form:

For the discrete case where the system is defined as a multistage process:

the performance index is defined similarly except that a summation sign 
replaces the integral of the preceding quadratic performance index 
equation. 

Rxx is a real, symmetric, positive-semidefinite matrix indicating the 
weighting of the cost on the elements of the state vector x. Ruu is a real, 
symmetric, positive-definite matrix indicating the weighting of the cost on 
the control inputs given by the vector u. Rxu is a real matrix indicating the 
cross-weighting of the cost between states and inputs; for many 
applications, it will consist of all zeros if the control and states are 
uncorrelated. 

Bryson and Ho showed in [BH75] that the optimal control which 
minimized this quadratic performance index is a linear feedback 
combination of the states, u = Krx, for both the continuous and discrete 
cases.

For the continuous case, Kr is defined as follows, with P solving the 
continuous-time Riccati equation:

and for the discrete case, P solves the discrete Riccati equation.

x· Ax Bu+=

J x' t( ) u' t( )
Rxx Rxu
Rxu' Ruu

x t( )
u t( )

dt

0

∞

∫=

xk 1+ Axk Buk+=

Kr Ruu
1– B'P Rxu+( )=

Rxx PA A′P PB Rxu+( )Ruu
1– Rxu ′ B′P+( )–+ + 0=

A'PA A'PB Rxu+( ) Ruu B'PB+( ) 1– B'PA R′xu+( )– Rxx+ P=

Kr Ruu B'PB+( ) 1– B'PA Rxu+( )=
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The optimal estimator and regulator problems illustrate the principle of 
duality—that for any given system realization {A,B,C} there is a dual 
realization {A',C',B'} with related controllability and observability. Refer 
to the Duality and Pole Placement section. 

regulator( )
[Kr,ev,P] = regulator(Sys,Rxx,Ruu,{Rxu})

The regulator( ) function calculates the optimal gain matrix Kr for a 
given dynamic system with specified state weighting, control weighting, 
and (optionally) cross-weighting matrices. 

Alternatively, Kr can be obtained through a call to riccati( ):

[P,resid,Kr,ev]=riccati(Sys,Rxx,Ruu,{S=Rxu})

The syntax for riccati( ) is discussed in the Riccati Equation section.

As shown in the diagram of a continuous-time regulator in Figure 6-3, the 
state equation for the regulator is the following:

If you want the closed-loop system eigenvalues, compute them as the 
eigenvalues of (A – BKr ).

If numerical difficulties are encountered, the algorithm will attempt 
to determine whether or not the problem is well posed. Checks are made 
to determine stabilizability and the positive definiteness or 
semipositive-definiteness of the cost functionals.

The most important design parameters are Rxx and Ruu, which need to be 
chosen to reflect the real limitations on how much control can be provided, 
or how problematic large state values can be. For an example of how to 
design a regulator for the inverted pendulum, refer to Example 6-5.

Example 6-5 Designing a Regulator for the Inverted Pendulum 

A classic control design problem, the inverted pendulum, consists of a rod 
(the pendulum) hinged to the top of a cart which can be moved freely in 
either direction along a line. The goal of the controller is to supply an input 
u such that the pendulum will be maintained in a vertical position (φ = 0, 
in Figure 6-4).

x· (A BK)r– x=
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Figure 6-4.  Diagram of Plant for the Inverted Pendulum Problem

Figure 6-4 shows the pendulum at φ = 0 and φ > 0. The distance of the cart 
from some initial reference point along the line of its motion is represented 
by the state variable x. You can measure the angle φ and the distance x 
easily—in fact, you will use measurements as your system outputs—but it 
is more difficult to obtain accurate measurements of the rate at which x and 
φ change. 

Designating  as the state vector, you can set up the system in 
Xmath:

A = [0,1,0,0;21,0,0,0.8;0,0,0,1;0,0,0,-4];

B = [0,-2,0,1]';

C = [1,0,0,0;0,0,1,0];

D = [0,0]';

ipsys = system(A,B,C,D);

You design a regulator with the assumption that all four states are available. 
Recalling that you defined the state vector as , you can decide 
the weighting you want to associate with each state. Refer to the quadratic 
performance index equation in the Linear Quadratic Regulator section for 
more information. For this particular problem, your most important 
performance goal is that the pendulum stay upright—that is, that φ be 
tightly controlled to stay as close to zero as possible. You also might prefer, 
though to a lesser extent, that you not have to move the cart over too great 
a distance. Physical limitations, such as the size of the room in which the 
experiment is conducted, should be considered. 

If you are not particularly concerned about the speed of the cart across the 
floor or that rate of change of the angle, you might define,

Rxx = diagonal([1,0,0.1,0]);

with the larger values in the matrix corresponding to states whose values 
you care most about. Presuming you are not too worried about the size of 
the input u you impart to the cart:

Ruu = 1e-5;

u

f

x

φ φ· x x·[ ]′

φ φ· x x·[ ]′
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Ruu is a scalar because you have only one input for this particular model.

[Kr,ev,P] = regulator(ipsys,Rxx,Ruu);

Kr

Kr (a row vector) = 

-348.778 -32.1056  -100  -27.3036

Note You will use this regulator gain later in designing a compensator.

Linear Quadratic Estimator
The LQR approach discussed in the preceding section is based on the 
assumption that the values of all the states are available. In the real world, 
only the output values are generally available and they are frequently 
corrupted with noise. You know from the Observability and Estimation 
section that you can obtain an estimate of the states using an observer if the 
system is reachable. The problem solved with the optimal estimator 
function estimator( ) is that of finding the best estimate of the states, 
given certain assumptions about the noise associated with the output. 

As shown for the continuous case in Figure 6-5, the plant system is 
augmented with an estimator—an observer used in conjunction with a 
noisy system. The estimator supplies estimates of all the system states and 
feeds back the difference between the estimated and the actual outputs 
through the optimal estimator gain Ke. estimator( ) calculates the 
constant, optimal state-estimator gain matrix Ke for a dynamic system. The 
estimator gain is derived by minimizing the expected mean square of the 
error between the measured output y and the output from the estimator,  
This model takes into account that there may be some process noise within 
the system model (plant) itself as well as some noise inherent in the device 
used to measure the outputs.

ŷ.
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Figure 6-5.  Diagram of the Estimator Representation

estimator( ) inputs include the dynamic system Sys, and the noise 
intensity matrices Qxx, Qyy, or Qxy. For a linear–time–invariant process 
described by:

Sys = system(A,B,C,D)

The following equation describes the complete plant:

A, B, C, and D are directly from the previous state-space system 
representation where ω is the input disturbance, G is the input disturbance 
matrix and ν is the measurement noise. The noise intensity matrices are 
defined as,

where E is the expectation operator and δ is the delta function.

The noises ω and ν are assumed to be white and zero mean. Qyy has matrix 
dimensions equal to the number of plant outputs and must be positive 
definite, while Qxx has matrix dimensions equal to the number of plant 
states and must be positive semi-definite. In many cases the input 
disturbances and output noises are uncorrelated so that Qxy = 0. If 

u y
Cx + Du

+

+

+

–

x = Ax + Bu + Gw
x

y
Cx + Du

Ke

x
x = Ax + Bu + Ke(y – y)

e = y – y

x· Ax Bu Gw+ +=

y Cx Du n+ +=

E v t( )v′ τ( )( ) Qyyδ t τ–( )=

E Gω t( )ω′ τ( )G'( ) Qxxδ t τ–( )=

E Gω t( )v′ τ( )( ) Qxyδ t τ–( )=
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numerical difficulties are encountered, the algorithm will attempt 
to determine whether or not the problem is well posed. Checks are 
made to determine the reachability and the positive definiteness or 
semipositive-definiteness of the covariance matrices.

Because not all the values in the state vector are directly available from 
measurements, your goal is to find an estimate of the state vector which 
minimizes, in a least-squares sense, the error between the actual state vector 
and the estimated state vector. This estimated vector is denoted by  
Because you want to minimize the error between this estimate and the 
actual state values, the quadratic expression to be minimized becomes:

For the case of a discrete-time system, this quadratic expression is 
evaluated as a summation rather than as an integral. No additional 
information is provided by the inclusion of the Du term, so it can be 
omitted without loss of generality.

A derivation of the differential equation for the continuous-time state 
vector estimate,  can be found in [Kai81]. In the limit, this differential 
equation, which provides the values for the continuous-time optimal 
estimator, is

(6-5)

where Ke = (PC ' + Qxy')Qyy
–1 and where the matrix P is obtained by solving 

the algebraic Riccati differential equation:

The two preceding equations describe the continuous-time Kalman-Bucy 
filter [KaB61].

x̂.

J x t( ) x̂ t( )–( )′ y t( ) ŷ t( )–( )′ •

0

∫=

Qxx Qxy
Qxy′ Qyy

x t( ) x̂ t( )–( )
y t( ) ŷ t( )–( )

dt

x̂,

x̂
·

A KeC–( )x̂ Bu Key+ +=

0 PA' AP PC' Qxy+( )Qyy
1– Qxy' CP+( )– Qxx+ +=
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The discrete-time estimator follows from a similar system description, 
using the discrete-time difference equation representation of the system, 
as shown in the following equations.

You obtain the discrete-time estimator by considering the state estimate at 
two separate stages. Begin with the assumption that an estimate of the state 
exists prior to each measurement of the output information. This 
pre-existing estimate is called . The estimated state value after each 
measurement update is denoted by . This method takes into account the 
fact that the system’s states change between measurements due to the 
system dynamics. The optimization problem, then, consists of minimizing 
the estimate error covariance M after each measurement update. This 
minimization is performed in [Kai81]. This problem is expressed in the 
same manner as in the preceding quadratic expression (for J), except that a 
summation sign replaces the integral as you are working with discrete data 
and you replace the variable J with M, to denote that this covariance follows 
each measurement update.

In determining the state values xk from each measured yyk, consider the time 
just prior to a new measurement for yk. At this point  and  are the 
current estimates for the state and covariance.  is derived from the 
previous measurement  and Mk is derived from the previous 
post-measurement error covariance, Pk – 1, as shown in Equation 6-6.

(6-6)

This is referred to as the time update, because you are propagating the state 
forward in time until the next measurement arrives. 

Then, at the time immediately following the measurement, you effect the 
measurement update. This reflects the new information in an improved 
state estimate and a somewhat smaller covariance, Pk. The equations for 

xk 1+ Axk Buk Gω+ +=

yk Cxk Duk ν+ +=

xk
x̂k

xk Mk
xk

x̂k 1– ,

xk Ax̂k 1– Gk+=

Mk APk 1– A' GQxxG'+=

x̂k
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this measurement update, derived in [Kal60], are shown in the following 
equations.

Substituting the system and noise matrices for the steady-state case, you 
solve the discrete Riccati equation to obtain P and thence Ke, as shown in 
Equation 6-7 and Equation 6-8.

(6-7)

where

and the discrete feedback gain Ke is given by

(6-8)

estimator( )
[Ke,ev,P] = estimator(Sys,Qxx,Qyy,{Qxy})

The estimator( ) function calculates the optimal gain matrix Ke 
for a given dynamic system with specified process, measurement, and 
(optionally) cross-weighting noise matrices. 

Alternatively, Ke can be obtained through a call to riccati( ):

[P,resid,Ke,ev]=riccati(Sys',Qxx,Qyy,{S=Qxy})

The syntax for riccati( ) is described in the Riccati Equation section.

As shown in the estimator diagram in Figure 6-4, the state equation for the 
estimator is:

x̂k xk Ke yk Cxk–( )+=

Pk Mk
1– C'Qyy

1– C+( )
1–

=

A'PA A'PC' Qyy CPC'+( ) 1– CPA– Qxx+ P=

A A' C'Qyy
1– Qxy–=

Qxx Qxx Qxy'Qyy
1– Qxy–=

K′e Qyy CPC′+( ) 1– CPA′ Qxy+( )=

x̂
·

A KeC–( )x̂ B D–( )u Gω+ +=
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If you want the closed-loop system eigenvalues, compute them as the 
eigenvalues of A – KeC. For an example of how to design a state estimator 
for the inverted pendulum problem, refer to Example 6-6.

Example 6-6 Designing a State Estimator for the Inverted Pendulum Problem

Most systems have some level of internal process noise that affects 
the value of the states. Returning to the inverted-pendulum plant of 
Example 6-5, assume that internal disturbances enter the system with the 
inputs. You thus can define a Qxx, which is a function of the input matrix:

Qxx = 0.25*B*B';

Similarly, allow for some disturbance noise affecting the accuracy of the 
outputs you measure from the system. You have two output measurements 
for this system, thus two separate sources of noise. Assume that the noise 
affecting one output measurement does not affect that other, and that the 
effects of measurement noise are rather small for this instance.

Qyy = diagonal([1e-6,3e-6]);

[Ke,ev,P] = estimator(ipsys,Qxx,Qyy);

Ke

Ke (a rectangular matrix) =

 42.6012 -6.21395

965.35 -159.818 

-18.6419 4.67597

-401.88 68.8522 

Now that you have access to a set of augmented states for the system (found 
with the differential equation for the continuous state vector shown in 
Equation 6-5), you can find the optimal controller based on the assumption 
of full-state feedback.

Linear Quadratic Gaussian Compensation
Many real-world control system design problems lend themselves to 
solutions using a regulator, except that not all the states are available as 
directly measured or computed outputs. 

A compensator combines your ability to control a system using full state 
feedback with our ability to estimate the system states given the system 
output. You can design the controller and estimator separately and then 
combine them to make the system respond as desired, based on the 
measured output. The combination of system, controller, and estimator into 
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a compensator is shown in Figure 6-6. This figure combines full-state 
regulator with gain Kr and state estimator with gain Ke.

Combining the plant, or system, equations with those of the regulator and 
estimator, you can simplify the system equations for the compensator as 
follows:

(6-9)

Figure 6-6.  Linear Quadratic Gaussian Compensator (in the Bold Rectangle)

Equation 6-9 describes the state-space equations for both the 
continuous-time compensator and the discrete-time compensator if no unit 
delay is used between the time at which an input arrives at the system and 
the time at which the new output appears. However, if you are working with 
a real-time system which enforces a unit delay between the measurement 
and the control update, you will need to create a “direct” compensator 
in predictor form. With this direct implementation, the system output 
equations become the same as the state update equations, multiplied by 
a factor of the regulator gain Kr.

x̂
·

Ax̂ Bu Ke y Cx̂ Du+( )–( )+ +=

x̂
·

Ax̂ KeCx̂– KeD B–( )u– Key+=

x̂ A KeC– B KeD–( )Kr–[ ]x̂ Key+=

u Krx̂– 0( )y+=

y

y

x = Ax + Bu
y = Cx + Du +–Kr

x = Ax + Bu + Ke(y – (Cx + Du))

Regulator

Estimator

Controller

x

u

u

+

Plant

nw
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lqgcomp( )
SysC = lqgcomp(Sys,Kr,Ke,{direct})

The lqgcomp( ) function creates a dynamic compensator given a 
dynamic system having at least one state and the regulator and estimator 
gain matrices. The returned compensator SysC is always in state-space 
form. 

The regulator and estimator gains Kr and Ke need to have been calculated 
prior to the call to lqgcomp( ). You can use regulator( ) and 
estimator( ) to compute these gains if they are not already available. 
These functions give you the option to incorporate the presence of the white 
process and measurement noises ω and ν in your model, as shown in 
Figure 6-6. 

Example 6-7 uses the inverted pendulum problem estimator and regulator 
gain vectors (obtained in the preceding two examples) to form a 
compensator. Notice that for this example you use the optional fields of the 
system( ) function to store information that will be useful when you 
combine and simulate the compensator-plant system.

Example 6-7 Combining the Regulator and Estimator into a Full Compensator

A = [0,1,0,0; 21,0,0,0.8; 0,0,0,1; 0,0,0,–4];

B = [0,–2,0,1]';

C = [1,0,0,0;0,0,1,0];

D = [0;0];

ipsys = system(A,B,C,D, {inputNames = "Force (u)", 

outputNames = ["phi","x"],

stateNames = ["phi","d(phi)","x","d(x)"]});

Kr=regulator(ipsys,diagonal([1,0,.1,0]),1e-5);

Ke=estimator(ipsys,0.25*B*B',

diagonal([1e-6,3e-6]));

ipsysc=lqgcomp(ipsys,Kr,Ke);

Now that you have the compensator, you need to connect it to the original 
plant:

ipsyscl = afeedback(ipsys, ipsysc);

The system now has eight states (four from the compensator, four from the 
original plant), three individual inputs (u and y, where y comprises φ and x) 
and three outputs (again, u and y). Here you have not added additional 
inputs to the system for process and measurement noise. Now you can 
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simulate the system’s response to a slow sine input, starting with the cart at 
rest and the pendulum initially held in the upright (φ = 0) position to obtain 
Figure 6-7:

t = 0:0.01:15;

u = pdm([sin(t/2); zeros(t);zeros(t)],t);ycl = 

ipsyscl*u;

[outNames] = names(ycl);

Set plot attributes for all three plots:

p1=plot ({xlab = "Time",ylab = "Amplitude",

columns = 1,rows = 3, hold})

for i = 1:3

p1=plot (ycl(i,1), {graph_number = i,

legend = outNames(i)});

endfor

plot(p1,{!hold}) 

Note The different y-axis scaling for each subplot is shown in Figure 6-7. This figure 
shows φ and x as a function of time, starting from zero, as a result of a sinusoidal force 
applied to the system input.
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Figure 6-7.  f and x as a Function of Time, Starting from Zero, as a Result of a Sinusoidal 
Force Applied to the System Input

Riccati Equation
Riccati equations, which take one of two distinct forms, arise in a number 
of linear systems and controls problems. The best-known use is in the 
solution of the optimal regulator and estimator problems, as described 
in the Linear Quadratic Regulator section and the Linear Quadratic 
Estimator section. 

The continuous-time Riccati equation is given by:

The discrete-time Riccati equation is given by:

This function can be used to solve the optimal regulator problem, and by 
duality, the optimal estimator problem. An alternative form of the 

A′P PA PB S+( ) inv× R( ) B′P S′+( ) Q+–+ 0=

A′PA P A′PB S+( ) inv R B′PB+( ) B′PA S′+( ) Q+×–– 0=
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continuous-time Riccati equation, which is used if B and S are not 
specified, is:

Note The meaning of R is quite different in this case.

riccati( )
[P,resid, Kr, ev] = riccati(A,Q,R,{B,tol,S,d})

Here, A can be either a matrix or a system object. 

If A is a matrix, riccati( ) solves the continuous Riccati equation in the 
Riccati Equation section unless the B matrix is present; then it solves the 
discrete form (also shown in the Riccati Equation section). 

If A is a system object, the solution method depends on whether the system 
is continuous or discrete. The B matrix is unnecessary to distinguish 
continuous from discrete.

The algorithms used are based on [Lau79] and [PLS80]. For the continuous 
case, an ordinary Schur solver is used. For the discrete-time case, the 
solution uses a generalized eigenvalue solver. For an example of a 
continuous Riccati equation, refer to Example 6-8. For an example of 
a discrete Riccati equation, refer to Example 6-9.

Example 6-8 Continuous Riccati Equation

You can use riccati( ) to find the Riccati solution and gain for the 
optimal regulator problem posed in Equation 6-9:

A = [0,1,0,0;21,0,0,0.8;0,0,0,1;0,0,0,-4];

B = [0,-2,0,1]';

Q = diagonal([1,0,0.1,0]);

R = B*((1e-5)\B');

Sys=system(A,B,rand(B'),[])

ys (a state space system) =

A

0    1    0     0  

21    0    0     0.8

0    0    0     1  

A′P PA PRP Q+–+ 0=

A'P PA PB S+( )R 1– B'P S'+( ) Q+–+ 0=
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0    0    0    -4  

B

0

-2

0

1

C

0.211325    0.756044    0.000221135    0.330327

D

0

X0

0

0

0

0

System is continuous

[P,resid] = riccati(A,Q,R);

norm(A'*P+P*A-P*R*P+Q,1)

ans (a scalar) = 2.53297e-13

R = 1e-5;

[P,resid]=riccati(Sys,Q,R);

norm(A'*P+P*A-P*B*inv(R)*B'*P +Q,1)

ans (a scalar) = 2.52492e-13

The small residue indicates that the problem was well posed and the 
solution is reliable.

Example 6-9 Discrete Riccati Equation

A = [0,0,0;.3,-0.1,0;0,1,0];

Q = [2,0,0;0,0,0;0,0,10];

B = [1,0,0]';

RD = .25 ;

Sys=system(A,B,B',[],{dt=1})

Sys (a state space system) =

A

0       0      0

0.3    -0.1    0

A'PA P– A'PB S+( ) R B'PB+( ) 1– B'PA S'+( ) Q+– 0=
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0       1      0

B

1

0

0

C

1    0    0

D

0

X0

0

0

0

System is discrete, sampling at 1 seconds.

[P,resid]=riccati(Sys,Q,RD,B);

norm(A'*P*A-P-A'*P*B*inv(RD+B'*P*B)*B'*P*A+Q,1)

resid (a scalar) = 7.90593e-12

[P,resid]=riccati(Sys,Q,RD,B);

norm(A'*P*A-P-A'*P*B*inv(RD+B'*P*B )* B'*P*A+Q,1)

ans (a scalar) = 7.90593e-12

Steady-State System Response Using Lyapunov 
Equations

The Lyapunov family of matrix equations are used in a number of control 
design problems. The general continuous Lyapunov equation is

(6-10)

The special form of the continuous Lyapunov equation replaces B with A':

(6-11)

These continuous Lyapunov equations have a unique solution X when  
λ(A) + λj(B) ≠ 0 for any eigenvalues λi,λj , as proved in [Kai80]. This also 
means that for a stable continuous-time system, X will be unique because 

AX XB+ C–=

AX XA'+ C–=
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all the eigenvalues of the system A matrix are negative. The discrete 
Lyapunov equation is:

(6-12)

Analogously, the preceding equation has a unique solution X when  
λi(A)λj(A) ≠ 1 for all i and j. Again, this means that a unique X exists for a 
stable discrete-time system matrix A, because all eigenvalues of A have 
absolute value less than 1 in this case. 

You can use the Lyapunov equation to compute the state covariance matrix 
of a stable system with white noise input, as illustrated in [BH75]. For a 
continuous-time state-space system described by

(6-13)

and supplied with zero-mean white noise ω(t) having covariance Q:

the state covariance X = E[xx'] is given by the differential Lyapunov 
equation:

(6-14)

For the discrete-time system described by

the white noise input covariance is defined as in the continuous case, using 
a Kronecker rather than a Dirac delta. 

For this case, the state covariance matrix X arises from the solution of the 
discrete Lyapunov equation:

(6-15)

After you have obtained the state covariance, you can obtain the output 
covariance Y easily. Whether you are using the following equation for the 
continuous case:

AXA' C+ X=

x· Ax Bu+=

E ω t( )ω' τ( )[ ] Qδ t τ–( )=

X· AX XA' BQB'+ +=

xk 1+ Axk Buk+=

X AXA' BQB'+=

y Cx Du+=
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or the following for the discrete case:

(6-16)

These results derive from the Lyapunov method of stability analysis for 
linear systems. Steady state means that at some point the states no longer 
change. The derivative term  approaches zero in the large for continuous 
systems, and xk+1 = xk for discrete-time ones. The state value vector x for 
which this is true is defined as the equilibrium state. As stated in [Oga70], 
a unique equilibrium state exists for systems with a nonsingular A matrix, 
whereas infinitely many equilibrium states exist if A is singular. A system 
is described as asymptotically stable if the state values approach the 
equilibrium state over time, no matter what value of x one started with. 
Such systems will always satisfy the following: for any positive-definite 
matrix Q, a positive definite matrix X can be found satisfying in the 
X equation (Equation 6-15) for the continuous case and Y equation 
(Equation 6-16) for the discrete case. 

Lyapunov equations also can be used to compute system controllability 
and observability grammians, which play an important role in internal 
balancing and model reduction. This application will be discussed further 
in the Balancing a Linear System section.

lyapunov( )
X = lyapunov(A,B,{C, discrete})

The lyapunov( ) function provides a solution to both the discrete and 
continuous-time Lyapunov equations. When called with three inputs 
(A,B,C), it solves the general continuous Lyapunov equation 
(Equation 6-10); when called with two inputs (A,C), it solves the special 
Lyapunov equation (Equation 6-11). When called with two inputs (A,B) 
and the {discrete} keyword, it solves the discrete Lyapunov equation 
(refer to Equation 6-12). For examples of discrete, continuous, and special 
Lyapunov equation solutions, refer to Example 6-10.

Algorithm
The algorithm for lyapunov( ) uses the Schur decomposition to convert 
A and B to upper triangular form, then finds the Lyapunov equation 
solution a column at a time by solving. lyapunov( ) warns the user if the 
eigenvalues of (A + eye(A)) are close to –1, in which case singularity may 
occur and cause the function to terminate. Furthermore, if any combination 

yk Cxk Duk+=

Y CXC' DQD'+=

x·
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of the diagonal elements of the Schur-decomposed A and B matrices sum 
to zero, a warning is given that the continuous equation solution may not 
be unique. A similar warning appears for the discrete equation solution if 
the product of any of the eigenvalues is 1.

To solve the special Lyapunov equation, use the following syntax:

lyapunov(A,C)

Example 6-10 Lyapunov Equation Solutions

The following examples each give results close to zero.

Discrete Lyapunov Equation

 

A = [1, 2;-3,.4];

C = [-1,3;6,2];

X = lyapunov(A,C, {discrete})

X (a square matrix) =

-0.0829686 0.946549

0.390993 -0.418771

norm(A*X*A'+C -X,1)

ans (a scalar) = 2.58127e-15

Continuous Lyapunov Equation

A = [1,-3;2,5];

B = [-4,3;2,1];

C = [1,3;-6,2];

X = lyapunov(A,B,C)

X (a square matrix) =

2.62963 -2.11111

-3.7037 2.22222

A*X + X*B + C;

norm(A*X + X*B + C,1)

ans (a scalar) = 0

A X× A' C+× X–=

A X X B×+× C–=
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Special Lyapunov Equation

A = [-4,10;2,7];

C = [.3,6;2,9];

X = lyapunov(A,C)

X (a square matrix) =

1.1816 -0.209028

1.12431 -0.773611

A*X + X*A' + C;

norm(A*X + X*A' + C,1)

ans (a scalar) = 5.4956e-15

rms( )
[Yrms,Ycov] = rms(Sys,Ucov)

The rms( ) function computes the root-mean-square response (average 
power at the system output) and the output covariance of a dynamic system 
driven by zero-mean white noise input. You can specify the intensity of the 
noise with the optional input covariance parameter Ucov, which defaults to 
identity. 

For a continuous system, the covariance of the states is given by X, where 
X is the differential Lyapunov solution (shown in Equation 6-14) with  
equal to zero for steady-state. Thus, for a system with output Y defined by:

the output covariance matrix (Ycov) is expressed as:

The output covariance for a discrete system follows analogously, 
with X being the solution to Equation 6-12 in this case. Thus, a call to 
lyapunov( ) forms the core of rms( ). 

The diagonal terms of the covariance matrix correspond to the expected 
values of the squares of the power at each output. Taking the square root of 
these diagonal terms, you obtain the rms (root mean square) power at each 
output. For an example of rms( ) responses, refer to Example 6-11.

A X X A'×+× C–=

X·

Y Cx Du+=

Ycov CXC′= DUcovD′+
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Example 6-11 rms( ) Response

Sys = system([-2.3,0.01,5.1;0,-0.35,-2;

0,2,-.35],[1,.25,.25]',[1.34,0,0],0);

w = logspace(0.01,1,50);

Uspec = pdm(ones(w),w);

[Ypsd,Yspec] = psd(Sys,Uspec);

Balancing a Linear System
Given a particular system model, the concept of model reduction centers 
on finding a lower-order model with similar input-output response 
characteristics. Typically this is assessed by comparing the impulse 
responses of the two systems [Moo81]. The goal in balancing a linear 
system is to find a state transformation that resolves the trade-off between 
controllability and observability, returning a transformed system whose 
states are equally controllable and observable. This raises the issue of 
quantifying a system’s controllability or observability. You can do this 
by considering the system singular values associated with the mappings 
between the inputs and states, and those associated with the state-output 
mappings. 

These singular values can be obtained from decompositions of two 
quantities referred to as the controllability and observability grammians. 
These quantities are represented by Wc and Wo respectively, and defined by 
the following equation for a system with an asymptotically stable A matrix.

(6-17)

For continuous systems, the controllability and observability grammians 
satisfy the Lyapunov equations:

(6-18)

Wc etABB'etA'dt

0

∞

∫=

Wo etA'C'CetAdt

0

∞

∫=

AWc WcA' BB'+ + 0=

A'Wo WoA C'C+ + 0=
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For discrete-time systems, the integrals in the Wc and Wo equations are 
replaced by summation signs and the grammians are obtained as the 
solutions of the discrete-time Lyapunov equations:

(6-19)

The controllability grammian must be full-rank for the system to be 
completely controllable; similarly, the observability grammian must be 
full-rank for the system to be completely observable (refer to [Kai80]). The 
condition number of Wc reflects how well conditioned the system model is 
with regard to pointwise state control.

The condition number of Wo reflects the condition of the model with regard 
to zero-input state-observation. 

A linear transformation T of the system {A,B,C} also results in a linear 
transformation of the grammians. If the state vector is transformed as 

the system and grammian transformations in the following 
equations:

Although the poles of the system (of the eigenvalues of A) do not change 
under the transformation, the singular values (eigenvalues of the 
grammians) do. However, the eigenvalues of the product of the grammians 
are invariant under transformation, and these are the singular values of the 
system input-to-state and state-to-output maps [LHPW87]. 

The system is defined as being internally balanced if for some 
transformation T, 

where

AWcA' BB'+ Wc=

A'WoA C'C+ Wo=

x Tx̂,=

Â T 1– AT=
Ŵc T 1– Wc T'( ) 1–=

Ĉ CT=

D̂ D=

B̂ T 1– B=

Ŵo T'WoT=

Ŵc2 Ŵo2 Σ2= =

Σ2 diagonal σ1
2 σ2

2 … σ2
2, , ,[ ]( )=
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and σ1
2 through σn

2 are the singular values of the matrix H satisfying 
Σ2 = H'H. They are termed the Hankel singular values. The σk

2 terms are 
ordered so that σ1

2 ≥ σ2
2 ≥ … ≥ σn

2 ≥ 0.

The balanced system essentially gives the best compromise between how 
well conditioned the system is with regard to controllability and 
observability. 

For model reduction problems, consider the balanced model partition as:

with

 

The essence of a balanced model reduction is that if σ2
k >> σ2

k + 1, 
the input/output behavior of the states in x2 is much less important than 
that of the states in x1. Eliminating the part of the model corresponding to 
x2 will result in a reduced-order model which retains the most important 
input-output characteristics of the original system.

balance( )
[SysB,HSV,T] = balance(Sys)

The balance( ) function performs input/output balancing on a linear 
system, returning the system transformed to a balanced form as SysB. HSV 
contains the second-order modes of the balanced system, or the singular 
values of H, where H is as defined previously. 

x·1
x·2

= A11 A12
A21 A22

x1
x2

B1
B2
u+

y C1C2[ ] x1
s2

Du+=

Σ2 Σ1
2 0

0 Σ2
2

=

Σ1
2 diagonal σ1

2....σk
2( )=

Σ2
2 diagonal σk 1+

2 ....σn
2( )=
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T is the transformation relating the states of the original system to the states 
of the balanced system  Transforming to balanced coordinates can 
be useful in model reduction because the relative importance of the state to 
the system’s input/output performance is highlighted. 

balance( ) first finds the controllability and observability grammians 
using lyapunov( ) for both the discrete and continuous cases. It then 
performs a singular-value decomposition of both grammians:

[Sc,Uc,Vc]=SVD(Wc); [So,Uo,Vo]=SVD(Wo)

and constructs the H matrix from the square roots of the singular values:

H=diagonal(sqrt(So))*Uo'*Uc*diagonal(sqrt(Sc))

The singular-value decomposition of H returns the Hankel singular 
values HSV. The transformation matrix T is obtained by backsolving 
and retransforming. The algorithm is given in [Moo81]. When the 
transformation has been found, the balanced system matrices then can be 
obtained from the original system through Equation 6-18. For an example 
of how to balance a system, refer to Example 6-12.

Example 6-12 Balancing a System

Taking a hypothetical system:

A=-[1,2,3,4;0,5,6,7;0,0,8,9;0,0,0,10];

B=[0;0;0;1];

C=[1,0,0,0];

D=0;

Sys = system(A,B,C,D);

Computing the controllability and observability grammians and noting 
their rather high condition numbers:

Wc=lyapunov(A,B*B');

Wo=lyapunov(A',C'*C);

condition(Wc)

ans (a scalar) = 283.029

condition(Wo)

ans (a scalar) = 1112.66

You then balance the system,

[SysB,HSV,T]=balance(Sys);

[Ab,Bb,Cb]=ABCD(SysB);

x Tx̂.=
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and compare the condition numbers of the balanced system’s grammians:

WcB=lyapunov(Ab,Bb*Bb');

WoB=lyapunov(Ab',Cb'*Cb);

condition(WcB)

ans (a scalar) = 12.7394

condition(WoB)

ans (a scalar) = 12.7394

The condition numbers are now much smaller, and they are equal, 
indicating that the system is now equally well conditioned in terms 
of its controllability and observability.

Modal Form of a System
The modes of a state-space system are defined as corresponding to the 
eigenvalues of the system’s A matrix. The modes of a system are distinct 
from the states of a system; because a given system can be arbitrarily 
transformed, the states can be arbitrarily assigned. The modes, on the other 
hand, do not change from realization to realization of a given system.

The modal decomposition of a system can be obtained mathematically 
through a Laplace transform, partial fraction decomposition, and eigen 
decomposition as shown in [Kai80]. The key advantage of a modal 
decomposition is that it provides a means by which large systems can 
be represented as a parallel combination of first-order systems. In addition, 
the modal decomposition of a given system representation is often better 
conditioned numerically. 

The modal form is particularly useful with structured dynamic systems 
whose poles primarily occur as complex pairs. When a system model has 
been converted to modal form, it can be reduced to focus attention on the 
particular modes whose dynamics are of interest.

modal( )
[SysMod, T] = modal(Sys)

The modal( ) function uses eigenvalue decomposition to find the Jordan 
form of the system matrix A (all eigenvalues on the diagonal). This 
approach is appropriate for models without repeated eigenvalues; modal 
decomposition of a system with repeated eigenvalues is numerically 
unreliable. If a system with repeated or very closely spaced eigenvalues is 
passed to modal( ), a warning appears noting that the results may not be 
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accurate. Given a variable Sys built from the matrices {A,B,C,D}, the 
modal decomposition SysMod is built from T–1 AT, T–1 B, CT, and D, where 
T is the transformation matrix to modal form. If you have complex poles, 
then T–1 AT is in block diagonal form. Initial conditions X0 also are 
transformed to T–1 X0. 

modal( ) does not accept input systems in transfer-function form, as the 
concept of modes applies only to a state-variable system representation and 
modes and poles are not interchangeable terms. The poles of a transfer 
function always correspond to the system modes (eigenvalues of the system 
A matrix).

mreduce( )
SysRed = mreduce(Sys, keep)

The mreduce( ) function computes a reduced-order form of a given 
system by retaining the states indicated within the vector keep. States not 
specified within this vector are eliminated to obtain a lower-order model 
SysRed.

mreduce( ) is implemented by partitioning the state vector x into two 
subvectors, x1 (states to be retained in the reduction) and x2 (states to be 
eliminated in the reduction), so that:

Similarly, the A, B, and C matrices are partitioned according to this state 
partition:

The model reductions differ for the continuous and discrete-time cases 
because the updates for the states being eliminated are handled differently 
in the respective differential and difference equations. In both cases, the 
eliminated states are taken to be constant over time. In the continuous case, 

x x1
x2

=

A A11 A12
A21 A22

= B B1
B2

= C C1 C2=
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the derivative of x2 is set to zero, resulting in reduced-order state equations 
of the form:

In the discrete case, x2k + 1 is taken to be equal to x2k so that the state 
equations become:

When using mreduce( ), remember to remove states corresponding to 
complex conjugate poles. Not doing so—that is, eliminating only one pole 
in a pair—will produce a meaningless system.

More complex model reduction algorithms, which are intended to model 
complete system dynamics in the absence of one of more states, are 
available with the Xmath Model Reduction Module, as shown in Figure 6-8 
and in Example 6-13.

Example 6-13 Model Reduction Module

A= [0.37,0.26,0.22,0.67;

0,0.52,0.63,0.20;

0,0,0.76,0.39;

0,0,0.04,0.83] 

B = [0,1.7e-5,0,0.0004]' 

C = [1,0,1,0] 

D = 0

Sys = system(A,B,C,D,{dt = 0.2});

[SysM, T] = modal(Sys)

SysM (a state space system) =

A

0.37 0 0 0 

0 0.52 0 0 

0 0 0.665289 0 

x·1 A11 A12A22
1– A21–( )x1 B1 A12A22

1– B2–( )u+=

y C1 C2– A22
1– A21( )x1 D C2A22

1– B2–( )u+=

x1k 1+ A11 A12 A22 I–( ) 1–– A21[ ]x1k +=

y C1 C2– A22 I–( ) 1– A21[ ]x1k +=

B1 A12 A22 I–( ) 1– B2–[ ]uk

D C2 A22 I–( ) 1– B2–[ ]uk



Chapter 6 State-Space Design

Xmath Control Design Module 6-40 ni.com

0 0 0 0.924711

B

-0.00116788

0.00272531

0.00334243

-0.00162497

C

1 0.866186 -0.848754 -1.0118

D

0

X0

0

0

0

0

State Names 

----------- 

State 1 State 2 State 3 State 4 

Input Names

-----------

Input 1 

Output Names

------------

Output 1 

System is discrete, sampling at 0.2 seconds.

T (a square matrix) =

1 0.866186 -0.668844 -0.641745

0 0.499722 -0.71998 -0.653294

0 0 -0.17991 -0.370059

0 0 0.043691 -0.15629 

eig(A)

ans (a column vector) =

0.37 

0.52 

0.665289

0.924711

T\A*T

ans (a square matrix) =

0.37 5.55112e-17 -6.245e-17 -2.77556e-16



Chapter 6 State-Space Design

© National Instruments Corporation 6-41 Xmath Control Design Module

0 0.52 1.94289e-16 6.66134e-16

0 0 0.665289 4.44089e-16

0 0 0 0.924711 

SysMR = mreduce(SysM, [1,2,4])

SysMR (a state space system) =

A

0.37 0 0 

0 0.52 0 

0 0 0.924711

B

-0.00116788

0.00272531

-0.00162497

C

1 0.866186 -1.0118

D

-0.00847566

X0

0

0

0

0

State Names 

----------- 

State 1 State 2 State 4 

Input Names

-----------

Input 1 

Output Names

------------

Output 1 

plot(step(SysM, 0:.2:10)) 

plot(step(SysMR, 0:.2:10),{keep,

legend=["Original System";"Reduced System"]})
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Figure 6-8.  Modal System and Reduced Modal System
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B
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support 
include the following:

– Self-Help Resources—For answers and solutions, visit the 
award-winning National Instruments Web site for software drivers 
and updates, a searchable KnowledgeBase, product manuals, 
step-by-step troubleshooting wizards, thousands of example 
programs, tutorials, application notes, instrument drivers, and 
so on.

– Free Technical Support—All registered users receive free Basic 
Service, which includes access to hundreds of Application 
Engineers worldwide in the NI Discussion Forums at 
ni.com/forums. National Instruments Application Engineers 
make sure every question receives an answer.

For information about other technical support options in your 
area, visit ni.com/services or contact your local office at 
ni.com/contact. 

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, National Instruments 
Alliance Partner members can help. To learn more, call your local NI office 
or visit ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 



office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.
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adjoint system, 3-3
afeedback, 3-4
append, 3-6
appending dynamic systems, 3-6
autocorrelation function, 5-20

B
balance, 6-35
bilinear transform, 2-14
Bode

default frequency range 
(deffreqrange), 5-10

format, 5-8
frequency analysis, 5-7
plots, 5-7

bode, 5-10

C
cancel, 2-2
cascaded systems, 5-21
Cauchy’s principle, 5-15
caution, A-1
check, 1-5, 4-6

convert keyword, 2-12
with system objects, 2-12

choosing a sample rate, 1-18
closed-loop system

eigenvalues, 6-14
simulate performance, 1-23

combinepf, 4-9
compensator

direct, in predictor form, 6-22
LQG, 6-21

connect, 3-8
connection, 3-1

parallel, 3-1, 3-2
series, 3-2
using * operator, 1-16, 3-2

constant gain feedback, 3-8
constant magnitude and phase loci, 5-14
continuous equivalent to a discrete system, 2-18
continuous system, 4-13

analysis, 2-7
checking for, 2-12

continuous time Riccati equation, 6-13, 6-25
controllability, 6-4, 6-35

grammians, 6-30
matrix, 6-2

controllable, 6-3
controllable partition of a state-space system, 6-3
conventions used in the manual, iv
coordinate transformation, 6-7
corner frequency, 5-12
cross-spectral density, 5-20

D
decibel gain, 5-8, 5-16
deffreqrange, 5-10
deftimerange, 4-15
delay time, td, 4-18
delta

function, 6-17
impulse, 5-20

diagnostic tools (NI resources), B-1
discrete

Riccati equation, 6-13, 6-20
system, 2-4, 4-13

analysis, 2-7
checking for, 2-12
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equivalent, 2-19

from a continuous system 
(example), 1-18

discrete-time Riccati equation, 6-25
discretize, 2-13
discretizing a system

backward rectangular method, 2-14
forward rectangular method, 2-14
hold equivalence methods, 2-15
pole-zero matching, 2-15
trapezoid method, 2-14
Tustin’s method, 2-14
using ztransform for zero-order hold, 2-15
with exponential keyword, 2-16

documentation
conventions used in the manual, iv
NI resources, B-1

domain, regular, 4-11
drivers (NI resources), B-1
duality, 6-6, 6-9, 6-10

principle, 6-14
dynamic system, 6-32

appending systems, 3-6
frequency response, 5-5
improper, 3-4
impulse response, 4-13
indexing, 2-12
size, 2-12

E
eigenvalues, 4-2, 6-6

generalized solver, 6-26
encirclements, 5-15
equilibrium state, 6-30
error covariance, 6-19
estimator, 6-5, 6-16, 6-20

optimal, 6-18

estimator system, 1-17
examples (NI resources), B-1
expectation operator, 6-17
exponential discretization method, 1-19, 2-16

F
feedback, 3-11

constant gain, 3-8
full-state, 1-13, 1-22
loop, 3-11
single input syntax, 1-9
using second input to create negative 

feedback loop, 1-10
filters, 5-20
Fourier transform, 5-20
freq, to find values of a transfer function at one 

frequency, 1-10
frequency response, 1-19, 5-5

calculating, 5-5
open-loop, 5-14

full-state feedback, 1-13, 1-22

G
gain margin, 5-8, 5-9, 5-12
general interconnection around a system, 3-8
generalized eigenvalue solver, 6-26
grammians, 6-30, 6-33
graphics window, 5-3

H
helicopter hover problem, 1-4

ad hoc approach, 1-4
discrete formulation, 1-4, 1-18
state feedback and observer design, 1-4, 

1-13
help, technical support, B-1
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impulse, 4-13

input, 4-13
continuous time, 4-13
discrete time, 4-13

response, 4-13, 6-33
initial, 4-16
initial conditions, 4-14, 4-16
input

disturbance matrix, 6-17
names, extracting, 2-11

instability, 5-9
instrument drivers (NI resources), B-1
internally balanced system (definition), 6-34
inverse, 3-3
inverted pendulum problem, 6-21

K
KnowledgeBase, B-1
Kronecker delta function, 6-29

L
linear

quadratic Gaussian compensation, 6-21
quadratic regulator, 6-12
systems, defining, 2-1
transformation, 6-34

logarithmic plots, 5-8
LQG

compensator, 6-21
estimator, weighting matrix, 1-21
regulator, weighting matrix, 1-21

lqgcomp, 6-23
Lyapunov

continuous equation, 6-28
discrete equation, 6-29

lyapunov, 6-30

M
magnitude, 5-5, 5-8
makecontinuous, 2-17

verifying discretization with, 2-18
makepoly, 2-3
margin, 5-12
Markov parameters, 4-13
matrix

controllability, 6-2
inputs disturbance, 6-17
observability, 6-5
Riccati equation, 6-18
transformation, 6-9

MATRIXx help, 1-3
maximum overshoot, Mp, 4-18
measurement

noise, 6-16, 6-17
update, 6-19

MIMO systems, 2-5
minimal, 1-11, 6-8
minimal realization of a system, 6-7
modal, 6-37
modern control, 6-1
modes of a system, 6-37
mreduce, 6-38

N
names, 2-11

default for systems, extracting, 2-11
modifying state estimate, 1-15

National Instruments support and 
services, B-1

neutral stability, 5-9
nichols, 5-14
noise

intensity matrices, 6-17
measurement, 6-16, 6-17, 6-23
process, 6-16
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steady-state response to white noise, 6-29
white process, 6-23

nomenclature, 1-2
numden, 2-10
numerical integration methods, 2-14
Nyquist

contour, 5-19
plot, 5-17
stability criterion, 5-15

nyquist, 5-16

O
observability, 6-4, 6-35

grammians, 6-30
matrix, 6-5

observable, 6-6
observable partition of a state-space 

system, 6-6
observer, 6-5, 6-16

-based controller, 1-14
gains, finding with poleplace, 1-15

open-loop
frequency response, 5-14
poles, 5-15

operators
linear system interconnection, 3-1
overloaded, 3-1

optimal
estimator, 6-18
regulator, 6-12

output
covariance, 6-32
names, extracting, 2-11

P
parallel connection, 3-1, 3-2
partial fraction expansion, 4-9
PDM, 4-10, 5-6
peak time, tp, 4-18

period, 2-10
phase, 5-5, 5-11

f, 5-8
margin, 5-8, 5-9, 5-12
rate of change, 5-12
tracking, 5-6

poleplace, 6-10
finding feedback gains, 1-14
finding observer gains, 1-15

poles, 1-1, 2-2, 4-3
open-loop, 5-15
placement, 6-1

problem, 6-10
unstable open-loop, 5-15

pole-zero
cancellation, 1-11
matching, 2-15

power spectral density, 5-20, 5-21
process noise, 6-16
programming examples (NI resources), B-1
psd, 5-20

Q
quadratic performance index, 6-12, 6-13

R
regular domain, 4-11
regulator

linear quadratic, 6-12
optimal, 6-12

residue, 1-2, 4-8
residues, definition, 4-5
Riccati

continuous-time equation, 6-25, 6-26
discrete-time equation, 6-25, 6-27

riccati, 6-26
Riccati discrete-time equation, 6-27
rise time, tr, 4-18
rlocus, 1-7, 5-3
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rms, 6-32
root locus, plotting, 5-3
root-mean-square response, 6-32

S
sample period, extract with period, 2-10
sample rate, 2-4

choosing, 1-18
scale system output, 1-16
Schur

decomposition, 6-30
solver, 6-26

selection matrix for adding or removing 
inputs, 3-9

sensitivity of states, determining, 4-17
serial, 3-1
series connection, 3-2

* operator, 1-16, 3-2
settling time, ts, 4-18
simulate performance of a closed-loop 

system, 1-23
singular values, 6-35
singular-value decomposition, 6-36
SISO systems, 2-3
software (NI resources), B-1
square system, 3-5
stability

checking for, 2-12
criteria, 5-8
criterion for Nyquist, 5-15
neutral, 5-9

stair, 6-9
staircase

algorithm, 6-3, 6-6
form, 6-9

state
covariance, 6-29
names, extracting, 2-11
sensitivity, determining, 4-17
transformation, 6-33

state-space system, 2-5
checking for, 2-12
controllable partition of, 6-3
convert to transfer function form, 1-5
decompose with abcd, 2-8
discrete, creating, 2-5
extracting transfer function polynomials 

with numden, 2-10
modes of, 6-37
observable partition of, 6-6

steady state, 6-30
system response, 6-28

step, 1-9, 4-18
step response, 4-18
support, technical, B-1
system, 2-6

analysis, 2-7
cascaded, 5-21
connections, 3-1
continuous, 4-13
controllability, 6-4
controllable, 6-1
discrete, 4-13
general interconnection, 3-8
impulse input to, 4-13
initial values for states, 2-7
input names, 2-7
inverse, 3-3
keywords, 2-7
minimal, 6-1
objects, using check with, 2-12
observability, 6-4
observable, 6-1
output names, 2-7
reformat an existing system, 2-8
square, 3-5
states names, 2-7
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T
technical support, B-1
time

domain simulation, general, 4-10
update, 6-19

training and certification (NI resources), B-1
transfer function

checking for, 2-12
coefficients form, 2-3
converted to state space before 

decomposition, 2-9
creating, 2-3
form, definition, 4-2
formed from partial fractions, 4-9
pole-zero-gain form, 2-4
polynomials, extracting from state-space 

system, 2-10
system models, 2-2
variable, 2-3

transform
bilinear, 2-14
Fourier, 5-20
trapezoidal, 2-14

transformation, 6-9
coordinate, 6-7
linear, 6-34
matrix, 6-9
state, 6-33

transmission zeros, 4-4

trapezoid method for discretization, 2-14
troubleshooting (NI resources), B-1
Tustin’s discretization method, 2-14

U
uncontrollable modes, 6-7

checking for, 1-21
unity-gain negative feedback, 1-9
unobservable modes

checking for, 1-21
unobservable uncontrollable modes, 6-7
unstable open-loop poles, 5-15

W
Web resources, B-1
wedge problem, 1-20
weighting, 6-13

matrices, 6-13, 6-20
for LQG regulator/estimator, 1-21

white noise, 6-23

Z
zeros, 1-2, 4-3

transmission, 4-4
zeros of the transfer function, 2-2
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